Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles

被引:507
作者
Zhang, Yang [2 ]
Chen, Yongsheng [1 ]
Westerhoff, Paul [1 ]
Crittenden, John [1 ]
机构
[1] Arizona State Univ, Dept Civil & Environm Engn, Tempe, AZ 85287 USA
[2] Wilson Engineers LLC, Phoenix, AZ 85044 USA
关键词
NOM; Nanoparticles; Calcium ions; Stability; Aggregation; METAL-OXIDE NANOPARTICLES; AGGREGATION KINETICS; CARBON NANOTUBES; PARTICLES; HEMATITE; WATER; MONOVALENT; SILICA; ACID;
D O I
10.1016/j.watres.2009.06.005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The stability of nanoparticles in aquatic environment plays an important role in determining their environmental implication and potential risk to human health. This research studied the impact of natural organic matter (NOM) and divalent cations (Ca2+) on the stability of engineered metal oxide nanoparticles (e.g. ZnO, NiO, TiO2, Fe2O3 and SiO2). When nanoparticles were present in neutral water, a relatively weak electrolyte concentration (0.01 M KCl) could result in their aggregation; however, with the addition of 1 mg/L NOM, the negative surface charge of nanoparticles increased significantly and therefore their propensity to aggregate is reduced. 4 mg/L NOM stabilized most nanoparticles by producing -30 mV or higher zeta potentials. On the other hand, the negative charge that NOM imparted to nanoparticles could be neutralized by divalent cations (calcium ions). 0.04 M-0.06 M Ca2+ induced the aggregation of NOM-coated nanoparticles. It should be noted that among all the studied nanoparticles, SiO2 exhibited the unique stability due to its low NOM adsorption capacity and small Hamaker constant. SiO2 remained stable no matter whether the solution contained NOM or Ca2+. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4249 / 4257
页数:9
相关论文
共 30 条
[1]   Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: From force laws and physical properties [J].
Ackler, HD ;
French, RH ;
Chiang, YM .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (02) :460-469
[2]   Green chemistry and the health implications of nanoparticles [J].
Albrecht, MA ;
Evans, CW ;
Raston, CL .
GREEN CHEMISTRY, 2006, 8 (05) :417-432
[3]   STRUCTURE AND KINETICS OF AGGREGATING COLLOIDAL HEMATITE [J].
AMAL, R ;
COURY, JR ;
RAPER, JA ;
WALSH, WP ;
WAITE, TD .
COLLOIDS AND SURFACES, 1990, 46 (01) :1-19
[4]  
Apha, 1998, STAND METH EX WAT WA, V20th
[5]   Nanoparticle silver released into water from commercially available sock fabrics [J].
Benn, Troy M. ;
Westerhoff, Paul .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (11) :4133-4139
[7]   Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems [J].
Brant, J ;
Lecoanet, H ;
Wiesner, MR .
JOURNAL OF NANOPARTICLE RESEARCH, 2005, 7 (4-5) :545-553
[8]   In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility [J].
Brunner, Tobias J. ;
Wick, Peter ;
Manser, Pius ;
Spohn, Philipp ;
Grass, Robert N. ;
Limbach, Ludwig K. ;
Bruinink, Arie ;
Stark, Wendelin J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (14) :4374-4381
[9]   Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions [J].
Chen, Kai Loon ;
Elimelech, Menachem .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 309 (01) :126-134
[10]  
Chen KL, 2006, ENVIRON SCI TECHNOL, V40, P1516, DOI 10.1021/es0518068