Kolmogorov-Sinai entropy for dilute gases in equilibrium

被引:61
作者
vanBeijeren, H
Dorfman, JR
Posch, HA
Dellago, C
机构
[1] UNIV MARYLAND, INST PHYS SCI & TECHNOL, COLLEGE PK, MD 20742 USA
[2] UNIV MARYLAND, DEPT PHYS, COLLEGE PK, MD 20742 USA
[3] UNIV VIENNA, INST EXPT PHYS, A-1090 VIENNA, AUSTRIA
[4] UNIV CALIF BERKELEY, DEPT CHEM, BERKELEY, CA 94720 USA
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 05期
关键词
D O I
10.1103/PhysRevE.56.5272
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the density expansion of the Kolmogarov-Sinai (KS) entropy per particle for a dilute gas in equilibrium, and use methods from the kinetic theory of gases to compute the leading term. For an equilibrium system, the KS entropy h(KS) is the sum of all of the positive Lyapunov exponents characterizing the chaotic behavior of the gas. We compute h(KS)/N, where N is the number of particles in the gas. This quantity has a density expansion of the form h(KS)/N=av[-ln (n) over tilde+b+O((n) over tilde)], where v is the single-particle collision frequency and (n) over tilde is the reduced number density of the gas. The theoretical values for the coefficients a and b are compared with the results of computer simulations, with excellent agreement for a, and less than satisfactory agreement for b. Possible reasons for this difference in b are discussed.
引用
收藏
页码:5272 / 5277
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]   Thermodynamic formalism and localization in Lorentz gases and Hopping models [J].
Appert, C ;
vanBeijeren, H ;
Ernst, MH ;
Dorfman, JR .
JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (5-6) :1253-1271
[3]   Thermodynamic formalism in the thermodynamic limit: Diffusive systems with static disorder [J].
Appert, C ;
vanBeijeren, H ;
Ernst, MH ;
Dorfman, JR .
PHYSICAL REVIEW E, 1996, 54 (02) :R1013-R1016
[4]   LYAPUNOV EXPONENTS OF SYSTEMS WITH ELASTIC HARD COLLISIONS [J].
DELLAGO, C ;
POSCH, HA .
PHYSICAL REVIEW E, 1995, 52 (03) :2401-2406
[5]   Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states [J].
Dellago, C ;
Posch, HA ;
Hoover, WG .
PHYSICAL REVIEW E, 1996, 53 (02) :1485-1501
[6]   Kolmogorov-Sinai entropy and Lyapunov spectra of a hard-sphere gas [J].
Dellago, C ;
Posch, HA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 240 (1-2) :68-83
[7]   Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: Numerical simulations [J].
Dellago, C ;
Posch, HA .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :211-214
[8]   CHAOTIC SCATTERING-THEORY OF TRANSPORT AND REACTION-RATE COEFFICIENTS [J].
DORFMAN, JR ;
GASPARD, P .
PHYSICAL REVIEW E, 1995, 51 (01) :28-35
[9]   Dynamical systems theory and transport coefficients: A survey with applications to Lorentz gases [J].
Dorfman, JR ;
vanBeijeren, H .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 240 (1-2) :12-42
[10]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656