Protease activated receptors in cardiovascular function and disease

被引:28
作者
Barnes, JA [1 ]
Singh, S
Gomes, AV
机构
[1] Univ W Indies, Fac Med Sci, Biochem Unit, St Augustine, Trinidad Tobago
[2] Univ Miami, Sch Med, Dept Mol & Cellular Pharmacol, Miami, FL 33101 USA
关键词
protease activated receptor; cardiovascular disease; thrombin;
D O I
10.1023/B:MCBI.0000041864.14092.5b
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Recent studies have shown that a novel class of protease activated receptors (PARs), which are composed of seven transmembrane G protein-coupled domains, are activated by serine proteases such as thrombin, trypsin and tryptase. Although four types ( PAR 1, PAR 2, PAR 3 and PAR 4) of this class of receptors have been identified, their discrete physiological and pathological roles are still being unraveled. Extracellular proteolytic activation of PARs results in the cleavage of specific sites in the extracellular domain and formation of a new N-terminus which functions as a tethered ligand. The newly formed tethered ligand binds intramolecularly to an exposed site in the second transmembrane loop and triggers G-protein binding and intracellular signaling. Recent studies have shown that PAR-1, PAR-2 and PAR-4 have been involved in vascular development and a variety of other biological processes including apoptosis and remodeling. The use of animal model systems, mainly transgenic mice and synthetic tethered ligand domains, have contributed enormously to our knowledge of molecular signaling and the regulatory properties of various PARs in cardiomyocytes. This review focuses on the role of PARs in cardiovascular function and disease.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 131 条
[1]  
Al-Ani B, 1999, J PHARMACOL EXP THER, V290, P753
[2]   DETECTION OF FUNCTIONAL RECEPTORS FOR THE PROTEINASE-ACTIVATED-RECEPTOR-2-ACTIVATING POLYPEPTIDE, SLIGRL-NH2, IN RAT VASCULAR AND GASTRIC SMOOTH-MUSCLE [J].
ALANI, B ;
SAIFEDDINE, M ;
HOLLENBERG, MD .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1995, 73 (08) :1203-1207
[3]   Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity [J].
Andersen, H ;
Greenberg, DL ;
Fujikawa, K ;
Xu, WF ;
Chung, DW ;
Davie, EW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11189-11193
[4]   Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor [J].
Andrade-Gordon, P ;
Mayanoff, BE ;
Derian, CK ;
Zhang, HC ;
Addo, MF ;
Darrow, AL ;
Eckardt, AJ ;
Hoekstra, WJ ;
McComsey, DF ;
Oksenberg, D ;
Reynolds, EE ;
Santulli, RJ ;
Scarborough, RM ;
Smith, CE ;
White, KB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12257-12262
[5]  
Aoki T, 1998, THROMB HAEMOSTASIS, V79, P1184
[6]   p53 inhibits α6β4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB [J].
Bachelder, RE ;
Ribick, MJ ;
Marchetti, A ;
Falcioni, R ;
Soddu, S ;
Davis, KR ;
Mercurio, AM .
JOURNAL OF CELL BIOLOGY, 1999, 147 (05) :1063-1072
[7]   Biphasic activation of PKBα/Akt in platelets -: Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate [J].
Banfic, H ;
Downes, CP ;
Rittenhouse, SE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (19) :11630-11637
[8]  
Barr AJ, 1997, J BIOL CHEM, V272, P2223
[9]  
Bohm SK, 1996, BIOCHEM J, V314, P1009
[10]   Rapamycin inhibits alpha(1)-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes - Evidence for involvement of p70 S6 kinase [J].
Boluyt, MO ;
Zheng, JS ;
Younes, A ;
Long, XL ;
ONeill, L ;
Silverman, H ;
Lakatta, EG ;
Crow, MT .
CIRCULATION RESEARCH, 1997, 81 (02) :176-186