Classical diffusion and quantum level velocities: Systematic deviations from random matrix theory

被引:17
作者
Lakshminarayan, A [1 ]
Cerruti, NR
Tomsovic, S
机构
[1] Washington State Univ, Dept Phys, Pullman, WA 99164 USA
[2] Phys Res Lab, Ahmedabad 380009, Gujarat, India
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 04期
关键词
D O I
10.1103/PhysRevE.60.3992
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the response of the quasienergy levels in the context of quantized chaotic systems through the level velocity variance and relate them to classical diffusion coefficients using detailed semiclassical analysis. The systematic deviations from random matrix theory, assuming independence of eigenvectors from eigenvalues, are shown to be connected to classical higher-order time correlations of the chaotic system. We study the standard map as a specific example, and thus the well-known oscillatory behavior of the diffusion coefficient with respect to the parameter is reflected exactly in the oscillations of the variance of the level velocities. We study the case of mixed phase-space dynamics as well and note a transition in the scaling properties of the variance that occurs along with the classical transition to chaos. [S1063-651X(99)11810-5].
引用
收藏
页码:3992 / 3999
页数:8
相关论文
共 35 条
[1]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[2]   PERSISTENT CURRENT FLUX CORRELATIONS CALCULATED BY QUANTUM CHAOLOGY [J].
BERRY, MV ;
KEATING, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18) :6167-6176
[3]   QUANTUM MAPS [J].
BERRY, MV ;
BALAZS, NL ;
TABOR, M ;
VOROS, A .
ANNALS OF PHYSICS, 1979, 122 (01) :26-63
[4]   CHAOTIC DYNAMICS AND THE GOE-GUE TRANSITION [J].
BOHIGAS, O ;
GIANNONI, MJ ;
DEALMEIDA, AMO ;
SCHMIT, C .
NONLINEARITY, 1995, 8 (02) :203-221
[5]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[6]  
CASATI G, 1979, LECT NOTES PHYSICS, V93
[7]  
CERRUTI NR, UNPUB
[8]   TIME EVOLUTION AND EIGENSTATES OF A QUANTUM ITERATIVE SYSTEM [J].
CHANG, SJ ;
SHI, KJ .
PHYSICAL REVIEW LETTERS, 1985, 55 (03) :269-272
[9]  
CHIRIKOV BV, 1987, REV PLASMA PHYS, V13, P1
[10]  
De Almeida A. M. O., 1988, HAMILTONIAN SYSTEMS