Embedding trees in recursive circulants

被引:21
作者
Lim, HS
Park, JH
Chwa, KY
机构
[1] KOREA ADV INST SCI & TECHNOL,DEPT COMP SCI,YUSONG GU,TAEJON 305701,SOUTH KOREA
[2] CHONNAM NATL UNIV,DEPT COMP SCI,BUK GU,KWANGJU 500757,SOUTH KOREA
关键词
D O I
10.1016/0166-218X(95)00078-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the results concerning the embedding of trees into recursive circulants. Recursive circulant G(N,d) is a circulant graph with N vertices and jumps of powers of d. We present dilation 1 embeddings of Fibonacci trees and full quaternary trees in G(2(m),2), and full binary trees and binomial trees in G(2(m),4).
引用
收藏
页码:83 / 99
页数:17
相关论文
共 13 条
[1]  
[Anonymous], 2001, GRAPH THEORY
[2]   STRATEGIES FOR INTERCONNECTION NETWORKS - SOME METHODS FROM GRAPH-THEORY [J].
BERMOND, JC ;
DELORME, C ;
QUISQUATER, JJ .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1986, 3 (04) :433-449
[3]   EFFICIENT EMBEDDINGS OF TREES IN HYPERCUBES [J].
BHATT, SN ;
CHUNG, FRK ;
LEIGHTON, FT ;
ROSENBERG, AL .
SIAM JOURNAL ON COMPUTING, 1992, 21 (01) :151-162
[4]  
BOESCH FT, 1972, NETWORKS, V11, P261
[5]   IMPLEMENTATION AND ANALYSIS OF BINOMIAL QUEUE ALGORITHMS [J].
BROWN, MR .
SIAM JOURNAL ON COMPUTING, 1978, 7 (03) :298-319
[7]  
HWANG K, 1988, COMPUTER ARCHITECTUR
[8]  
KNUTH D, 1975, ART COMPUTER PROGRAM, V3
[9]  
MONIEN B, 1988, LECT NOTES COMPUT SC, V319, P170
[10]  
Park J. H., 1994, P INT S PAR ARCH ALG, P73, DOI DOI 10.1109/ISPAN.1994.367162