An implicit energy-conservative 2D Fokker-Planck algorithm -: I.: Difference scheme

被引:40
作者
Chacón, L
Barnes, DC
Knoll, DA
Miley, GH
机构
[1] Univ Illinois, Fus Studies Lab, Urbana, IL 61801 USA
[2] Univ Calif Los Alamos Natl Lab, XPA, Los Alamos, NM 87545 USA
[3] Univ Calif Los Alamos Natl Lab, XHM, Los Alamos, NM 87545 USA
关键词
plasma simulation; conservative discretization; energy-conservative Fokker-Planck;
D O I
10.1006/jcph.1999.6394
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical energy conservation in Fokker-Planck problems requires the energy moment of the Fokker-Planck equation to cancel exactly. However, standard discretization techniques not only do not observe this requirement (thus precluding exact energy conservation), but they also demand very refined meshes to keep the energy error under control. In this paper, a new difference scheme for multidimensional Fokker-Planck problems that improves the numerical cancellation of the energy moment is proposed. Crucial to this new development is the reformulation of the friction term in the Fokker-Planck collision operator using Maxwell stress tensor formalism, As a result, the Fokker-Planck collision operator rakes the form of a double divergence operating on a tensor, which is suitable for particle and energy conservative differencing. Numerical results show that the new discretization scheme improves the cancellation of the energy moment integral over standard approaches by at least an order of magnitude. (C) 2000 Academic Press.
引用
收藏
页码:618 / 653
页数:36
相关论文
共 9 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   An implicit energy-conservative 2D Fokker-Planck algorithm -: II. Jacobian-free Newton-Krylov solver [J].
Chacón, L ;
Barnes, DC ;
Knoll, DA ;
Miley, GH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (02) :654-682
[3]  
Chan S. K., 1970, Engineering Fracture Mechanics, V2, P1, DOI 10.1016/0013-7944(70)90026-3
[4]   IMPLICIT AND CONSERVATIVE DIFFERENCE SCHEME FOR THE FOKKER-PLANCK EQUATION [J].
EPPERLEIN, EM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (02) :291-297
[5]  
HINTON FL, 1984, HDB PLASMA PHYSICS, V1, P147
[6]  
JACKSON JD, 1975, CLASSICAL ELECTRODYN, P239
[7]   RELAXATION OF A SYSTEM OF CHARGED-PARTICLES [J].
KHO, TH .
PHYSICAL REVIEW A, 1985, 32 (01) :666-669
[8]   FOKKER-PLANCK EQUATION FOR AN INVERSE-SQUARE FORCE [J].
ROSENBLUTH, MN ;
MACDONALD, WM ;
JUDD, DL .
PHYSICAL REVIEW, 1957, 107 (01) :1-6
[9]  
Saad Y., 1996, Iterative Methods for Sparse Linear Systems