Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels

被引:174
作者
Duarte, Filipa [2 ]
Maldonado-Hodar, F. J. [1 ]
Perez-Cadenas, A. F. [1 ]
Madeira, Luis M. [2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Quim Inorgan, E-18071 Granada, Spain
[2] Univ Porto, Fac Engn, Dept Engn Quim, LEPAE, P-4200465 Oporto, Portugal
关键词
Oxidation; Fenton; Dyes; Hydrogen peroxide; Carbons; Transition metals; ADVANCED OXIDATION; FE; IRON; PH; SYSTEM; H2O2;
D O I
10.1016/j.apcatb.2008.07.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This works deals with the non-biodegradable azo-dye Orange II degradation using the heterogeneous Fenton-like reaction. Two catalyst series based on transition metals (Fe, Co, Ni) were prepared trying to improve not only the catalytic performance but also to diminish the metal leaching. Thus, metal-doped carbon aerogels and supported catalysts, the latter prepared by classical wet impregnation, were tested. The catalysts were characterized by different techniques: N-2 adsorption, mercury porosimetry, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Chemical oxidation of the azo-dye Orange II was carried out in a batch reactor, at atmospheric pressure and 30 degrees C. The influence of the preparation method, the porous characteristics of supports and metal dispersions on the metal leaching and catalytic performance were analyzed. Impregnated catalysts are in general more active than metal-doped carbon aerogels, because metal particles are more accessible to reactants, while the doped-carbon aerogels present a smaller leaching tendency. The behaviour of impregnated catalysts is determined not only by the metal Used but also by the porous texture of the supports. Thus, microporosity strongly favours the Orange II adsorption capacity and tends to reduce the metal leaching, while mesoporosity strongly increases the metal dispersion and consequently, the catalytic performance. Iron is seemingly the most active metal tested, exhibiting simultaneously the lower leaching levels for all of the supports. Although cobalt is an interesting alternative in terms of activity, it exhibits unacceptable leaching degrees. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 27 条
[1]   Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions [J].
Aguiar, Andre ;
Ferraz, Andre .
CHEMOSPHERE, 2007, 66 (05) :947-954
[2]  
Bansal R.C., 1988, ACTIVE CARBON
[3]  
Bigda RJ, 1995, CHEM ENG PROG, V91, P62
[4]   CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons [J].
Cazorla-Amoros, D ;
Alcaniz-Monge, J ;
de la Casa-Lillo, MA ;
Linares-Solano, A .
LANGMUIR, 1998, 14 (16) :4589-4596
[5]   Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni):: The role of M2+ species on the reactivity towards H2O2 reactions [J].
Costa, RCC ;
Lelis, MFF ;
Oliveira, LCA ;
Fabris, JD ;
Ardisson, JD ;
Rios, RRVA ;
Silva, CN ;
Lago, RM .
JOURNAL OF HAZARDOUS MATERIALS, 2006, 129 (1-3) :171-178
[6]   Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides [J].
Costa, Regina C. C. ;
Moura, Flavia C. C. ;
Ardisson, J. D. ;
Fabris, J. D. ;
Lago, R. M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 83 (1-2) :131-139
[7]   Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process [J].
De Laat, J ;
Le, TG .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 66 (1-2) :137-146
[8]   Zeolite-mediated advanced oxidation of model chlorinated phenolic aqueous waste. Part 1: Aqueous phase Fenton catalysis [J].
Doocey, DJ ;
Sharratt, PN .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2004, 82 (B5) :352-358
[9]  
DUARTE F, 2008, P IJUP08 INV JOV U P, P86
[10]   Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst [J].
Feng, JY ;
Hu, XJ ;
Yue, PL .
WATER RESEARCH, 2006, 40 (04) :641-646