ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings

被引:78
作者
Rohde, A [1 ]
De Rycke, R [1 ]
Beeckman, T [1 ]
Engler, G [1 ]
Van Montagu, M [1 ]
Boerjan, W [1 ]
机构
[1] Univ Ghent, Vlaasms Interuniv Inst Biotechol, Dept Plantengenet, B-9000 Ghent, Belgium
关键词
D O I
10.1105/tpc.12.1.35
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3) protein has been identified previously as a crucial regulator of late seed development. Here, we show that dark-grown abi3 plants, or abi3 plants returned to the dark after germination in the light, developed and maintained an etioplast with a prominent prolamellar body at developmental stages in which the wild type did not. Overexpression of ABI3 led to the preservation of the plastid ultrastructure that was present at the onset of darkness. These observations suggest that ABI3 plays a role in plastid differentiation pathways in vegetative tissues. Furthermore, the analysis of deetiolated (det1) abi3 double mutants revealed that DET1 and ABI3 impinge on a multitude of common processes. During seed maturation, ABI3 required DET1 to achieve its full expression. Mature det1 abi3 seeds were found to be in a highly germinative state, indicating that germination is controlled by both DET1 and ABI3, During plastid differentiation in leaves of dark-grown plants, DET1 is required for the action of ABI3 as it is during seed development. Together, the results suggest that ABI3 is at least partly regulated by light.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 51 条
[1]  
APEL K, 1980, EUR J BIOCHEM, V111, P251, DOI 10.1111/j.1432-1033.1980.tb06100.x
[2]  
Beeckman T., 1994, Plant Molecular Biology Reporter, V12, P37, DOI 10.1007/BF02668662
[3]   Genetic analysis of ABA signal transduction pathways [J].
Bonetta, D ;
McCourt, P .
TRENDS IN PLANT SCIENCE, 1998, 3 (06) :231-235
[4]   A FUSCA GENE OF ARABIDOPSIS ENCODES A NOVEL PROTEIN ESSENTIAL FOR PLANT DEVELOPMENT [J].
CASTLE, LA ;
MEINKE, DW .
PLANT CELL, 1994, 6 (01) :25-41
[5]   MUTATIONS IN THE DET1 GENE AFFECT CELL-TYPE-SPECIFIC EXPRESSION OF LIGHT-REGULATED GENES AND CHLOROPLAST DEVELOPMENT IN ARABIDOPSIS [J].
CHORY, J ;
PETO, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (22) :8776-8780
[6]   Gibberellins, brassinosteroids and light-regulated development [J].
Chory, J ;
Li, J .
PLANT CELL AND ENVIRONMENT, 1997, 20 (06) :801-806
[7]   ARABIDOPSIS THALIANA MUTANT THAT DEVELOPS AS A LIGHT-GROWN PLANT IN THE ABSENCE OF LIGHT [J].
CHORY, J ;
PETO, C ;
FEINBAUM, R ;
PRATT, L ;
AUSUBEL, F .
CELL, 1989, 58 (05) :991-999
[8]   From seed germination to flowering, light controls plant development via the pigment phytochrome [J].
Chory, J ;
Catterjee, M ;
Cook, RK ;
Elich, T ;
Fankhauser, C ;
Li, J ;
Nagpal, P ;
Neff, M ;
Pepper, A ;
Poole, D ;
Reed, J ;
Vitart, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12066-12071
[9]  
CONE KC, 1993, PLANT CELL, V5, P1807, DOI 10.1105/tpc.5.12.1807
[10]   THE NADPH-PROTOCHLOROPHYLLIDE OXIDOREDUCTASE IS THE MAJOR PROTEIN CONSTITUENT OF PROLAMELLAR BODIES IN WHEAT (TRITICUM-AESTIVUM L) [J].
DEHESH, K ;
RYBERG, M .
PLANTA, 1985, 164 (03) :396-399