Cellular uptake and subsequent intracellular trafficking of R8-liposomes introduced at low temperature

被引:59
作者
Iwasa, Akitada
Akita, Hidetaka
Khalil, Ikramy
Kogure, Kentaro
Futaki, Shiroh
Harashima, Hideyoshi
机构
[1] Hokkaido Univ, Grad Sch Pharmaceut Sci, Sapporo, Hokkaido 0600812, Japan
[2] Kyoto Univ, Inst Chem Res, Uji, Kyoto, Japan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2006年 / 1758卷 / 06期
基金
日本学术振兴会;
关键词
intracellular trafficking; PTD; R8; liposome; cellular uptake;
D O I
10.1016/j.bbamem.2006.04.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intracellular trafficking is a determining factor in the transgene expression efficiency of gene vectors. In the present study, the mechanism of the cellular uptake of octaarginine (R8)-modified liposomes, when introduced at 37 degrees C and 4 degrees C, was investigated in living cells. Compared with 37 degrees C, the uptake of R8-liposomes was only slightly reduced at 4 degrees C. Dual imaging of liposomes and plasma membranes revealed that R8-liposomes were internalized by vesicular transport, and partially escaped to the cytosol at the perinuclear region at 37 degrees C. When introduced at 4 degrees C, intracellular liposomes were observed within a specific region close to the plasma membrane, and internalization of the plasma membrane was completely inhibited. Therefore, at 4 degrees C, R8-liposomes appear to enter cells via unique pathway, which is separate and distinct from energy-dependent vesicular transport. The subsequent nuclear delivery of encapsulated pDNA, when introduced at 4 degrees C, was less prominent compared with those introduced at 37 degrees C. Collectively, these findings demonstrate that a vesicular transport-independent pathway is responsible for the cellular uptake of liposomes. In addition, the uptake route is closely related to the subsequent nuclear delivery process; the operation of an endogenous vesicular sorting system is advantageous for the nuclear delivery of pDNA. (c) 2006 Elsevier B.V All rights reserved.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 43 条
[1]   Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy [J].
Akita, H ;
Ito, R ;
Khalil, IA ;
Futaki, S ;
Harashima, H .
MOLECULAR THERAPY, 2004, 9 (03) :443-451
[2]   POTOCYTOSIS - SEQUESTRATION AND TRANSPORT OF SMALL MOLECULES BY CAVEOLAE [J].
ANDERSON, RGW ;
KAMEN, BA ;
ROTHBERG, KG ;
LACEY, SW .
SCIENCE, 1992, 255 (5043) :410-411
[3]   Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates [J].
Astriab-Fisher, A ;
Sergueev, DS ;
Fisher, M ;
Shaw, BR ;
Juliano, RL .
BIOCHEMICAL PHARMACOLOGY, 2000, 60 (01) :83-90
[4]   Tat peptide-mediated cellular delivery:: back to basics [J].
Brooks, H ;
Lebleu, B ;
Vivès, E .
ADVANCED DRUG DELIVERY REVIEWS, 2005, 57 (04) :559-577
[5]   EFFICIENT CYTOPLASMIC DELIVERY OF A FLUORESCENT DYE BY PH-SENSITIVE IMMUNOLIPOSOMES [J].
CONNOR, J ;
HUANG, L .
JOURNAL OF CELL BIOLOGY, 1985, 101 (02) :582-589
[6]   Antennapedia and HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans [J].
Console, S ;
Marty, C ;
García-Echeverría, C ;
Schwendener, R ;
Ballmer-Hofer, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (37) :35109-35114
[7]  
DEROSSI D, 1994, J BIOL CHEM, V269, P10444
[8]   Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent [J].
Derossi, D ;
Calvet, S ;
Trembleau, A ;
Brunissen, A ;
Chassaing, G ;
Prochiantz, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (30) :18188-18193
[9]   Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells [J].
Eguchi, A ;
Akuta, T ;
Okuyama, H ;
Senda, T ;
Yokoi, H ;
Inokuchi, H ;
Fujita, S ;
Hayakawa, T ;
Takeda, K ;
Hasegawa, M ;
Nakanishi, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :26204-26210
[10]   TAT-MEDIATED DELIVERY OF HETEROLOGOUS PROTEINS INTO CELLS [J].
FAWELL, S ;
SEERY, J ;
DAIKH, Y ;
MOORE, C ;
CHEN, LL ;
PEPINSKY, B ;
BARSOUM, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (02) :664-668