Probing dark matter haloes with satellite kinematics

被引:116
作者
van den Bosch, FC [1 ]
Norberg, P
Mo, HJ
Yang, XH
机构
[1] ETH Honggerberg, Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[2] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA
关键词
methods : statistical; galaxies : fundamental parameters; galaxies : haloes; galaxies : kinematics and dynamics; galaxies : structure; dark matter;
D O I
10.1111/j.1365-2966.2004.08021.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using detailed mock galaxy redshift surveys (MGRSs) we investigate to what extent the kinematics of large samples of satellite galaxies extracted from flux-limited surveys can be used to constrain halo masses. Unlike previous studies, which focused only on satellites around relatively isolated host galaxies, we try to recover the average velocity dispersion of satellite galaxies in all haloes, as a function of the luminosity of the host galaxy. We show that previous host-satellite selection criteria (SC) yield relatively large fractions of interlopers and with a velocity distribution that, contrary to what has been assumed in the past, differs strongly from uniform. We show that with an iterative, adaptive selection criterion one can obtain large samples of hosts and satellites, with strongly reduced interloper fractions, that allow an accurate measurement of sigma (sat)(L-host) over 2.5 orders of magnitude in host luminosity. We use the conditional luminosity function (CLF) to make predictions and show that satellite weighting, which occurs naturally when stacking many host-satellite pairs to increase the signal-to-noise ratio, introduces a bias towards higher sat sigma (sat)(L-host) compared to the true, host-averaged mean. A further bias, in the same direction, is introduced when using flux-limited, rather than volume-limited, surveys. We apply our adaptive selection criterion to the Two Degree Field Galaxy Redshift Survey (2dFGRS) and obtain a sample of 12 569 satellite galaxies and 8132 host galaxies. We show that the kinematics of these satellite galaxies are in excellent agreement with the predictions based on the CLF, after taking account of the various biases. We thus conclude that there is independent dynamical evidence to support the mass-to-light ratios predicted by the CLF formalism.
引用
收藏
页码:1302 / 1314
页数:13
相关论文
共 56 条
[1]   The mass-to-light function:: Antibias and Ωm [J].
Bahcall, NA ;
Cen, R ;
Davé, R ;
Ostriker, JP ;
Yu, Q .
ASTROPHYSICAL JOURNAL, 2000, 541 (01) :1-9
[2]  
BAHCALL NA, 1995, ASTROPHYS J, V447, pL81, DOI 10.1086/309577
[3]   The nature of galaxy bias and clustering [J].
Benson, AJ ;
Cole, S ;
Frenk, CS ;
Baugh, CM ;
Lacey, CG .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 311 (04) :793-808
[4]   The halo occupation distribution and the physics of galaxy formation [J].
Berlind, AA ;
Weinberg, DH ;
Benson, AJ ;
Baugh, CM ;
Cole, S ;
Davè, R ;
Frenk, CS ;
Jenkins, A ;
Katz, N ;
Lacey, CG .
ASTROPHYSICAL JOURNAL, 2003, 593 (01) :1-25
[5]   The halo occupation distribution: Toward an empirical determination of the relation between galaxies and mass [J].
Berlind, AA ;
Weinberg, DH .
ASTROPHYSICAL JOURNAL, 2002, 575 (02) :587-616
[6]  
Binney J., 2008, GALACTIC DYNAMICS
[7]   Mass-to-light ratios of 2dF galaxies [J].
Brainerd, TG ;
Specian, MA .
ASTROPHYSICAL JOURNAL, 2003, 593 (01) :L7-L10
[8]   Average mass and light profiles of galaxy clusters [J].
Carlberg, RG ;
Yee, HKC ;
Ellingson, E .
ASTROPHYSICAL JOURNAL, 1997, 478 (02) :462-475
[9]   The average mass profile of galaxy clusters [J].
Carlberg, RG ;
Yee, HKC ;
Ellingson, E ;
Morris, SL ;
Abraham, R ;
Gravel, P ;
Pritchet, CJ ;
SmeckerHane, T ;
Hartwick, FDA ;
Hesser, JE ;
Hutchings, JB ;
Oke, JB .
ASTROPHYSICAL JOURNAL, 1997, 485 (01) :L13-L16
[10]   Galaxy cluster virial masses and Omega [J].
Carlberg, RG ;
Yee, HKC ;
Ellingson, E ;
Abraham, R ;
Gravel, P ;
Morris, S ;
Pritchet, CJ .
ASTROPHYSICAL JOURNAL, 1996, 462 (01) :32-49