Crystal structure of decameric fructose-6-phosphate aldolase from Escherichia coli reveals inter-subunit helix swapping as a structural basis for assembly differences in the transaldolase family

被引:62
作者
Thorell, S
Schürmann, M
Sprenger, GA
Schneider, G
机构
[1] Karolinska Inst, Dept Med Biochem & Biophys, Div Mol Struct Biol, S-17177 Stockholm, Sweden
[2] Forschungszentrum Julich GmbH, Inst Biotechnol 1, D-52425 Julich, Germany
关键词
aldolase; enzyme mechanism; protein crystallography; transaldolase; domain swapping;
D O I
10.1016/S0022-2836(02)00258-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fructose-6-phosphate aldolase from Escherichia coli is a member of a small enzyme subfamily (MipB/TalC family) that belongs to the class I aldolases. The three-dimensional structure of this enzyme has been determined at 1.93 A resolution by single isomorphous replacement and tenfold non-crystallographic symmetry averaging and refined to an R-factor of 19.9% (R-free 21.3%). The subunit folds into an alpha/beta barrel, with the catalytic Ivsine residue on barrel strand 04. It is very similar in overall structure to chat of bacterial and mammalian transaldolases, although more compact due to extensive deletions of additional secondary structural elements. The enzyme forms a decamer of identical subunits with point group symmetry 52. Five subunits are arranged as a pentamer, and two ring-like pentamers pack like a doughnut to form the decamer. A major interaction within the pentamer is through the C-terminal helix from one monomer, which runs across the active site of the neighbouring subunit. In classical transaldolases, this helix folds back and covers the active site of the same subunit and is involved in dimer formation. The inter-subunit helix swapping appears to be a major determinant for the formation of pentamers rather than dimers while at the same time preserving importing interactions of this helix with the active site of the enzyme. The active site lysine residue is covalently modified, by forming a carbinolamine with glyceraldehyde from the crystallisation mixture. The catalytic machinery is very similar to that of transaldolase, which together with the overall structural similarity suggests that enzymes of the MipB/TALC subfamily are evolutionary related to the transaldolase family. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 45 条
[1]   Covalent intermediate trapped in 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase structure at 1.95-Å resolution [J].
Allard, J ;
Grochulski, P ;
Sygusch, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (07) :3679-3684
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   NOVEL KINETIC AND STRUCTURAL-PROPERTIES OF CLASS-ID-FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE FROM ESCHERICHIA-COLI (CROOKES STRAIN) [J].
BALDWIN, SA ;
PERHAM, RN .
BIOCHEMICAL JOURNAL, 1978, 169 (03) :643-652
[4]  
BANKI K, 1994, J BIOL CHEM, V269, P2847
[5]   Inhibition of the catalytic activity of human transaldolase by antibodies and site-directed mutagenesis [J].
Banki, K ;
Perl, A .
FEBS LETTERS, 1996, 378 (02) :161-165
[6]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[7]   3D DOMAIN SWAPPING - A MECHANISM FOR OLIGOMER ASSEMBLY [J].
BENNETT, MJ ;
SCHLUNEGGER, MP ;
EISENBERG, D .
PROTEIN SCIENCE, 1995, 4 (12) :2455-2468
[8]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[9]   Snapshots of catalysis: The structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate [J].
Choi, KH ;
Shi, J ;
Hopkins, CE ;
Tolan, DR ;
Allen, KN .
BIOCHEMISTRY, 2001, 40 (46) :13868-13875
[10]   Miscellaneous algorithms for density modification [J].
Cowtan, K ;
Main, P .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1998, 54 :487-493