共 176 条
Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver
被引:224
作者:
Rusyn, Ivan
Peters, Jeffrey M.
Cunningham, Michael L.
机构:
[1] Univ N Carolina, Dept Environm Sci & Engn, Sch Publ Hlth, Chapel Hill, NC 27599 USA
[2] Penn State Univ, Dept Vet & Biomed Sci, University Pk, PA 16802 USA
[3] Penn State Univ, Ctr Mol Toxicol & Carcinogenesis, University Pk, PA 16802 USA
[4] NIEHS, Natl Toxicol Program, Res Triangle Pk, NC 27709 USA
关键词:
cancer;
human;
liver;
mouse;
peroxisome;
proliferators;
D O I:
10.1080/10408440600779065
中图分类号:
R99 [毒物学(毒理学)];
学科分类号:
100405 ;
摘要:
The industrial plasticizer di-(2-ethylhexyl)phthalate (DEHP) is used in manufacturing of a wide variety of polyvinyl chloride (PVC)-containing medical and consumer products. DEHP belongs to a class of chemicals known as peroxisome proliferators (PPs). PPs are a structurally diverse group of compounds that share many (but perhaps not all) biological effects and are characterized as non-genotoxic rodent carcinogens. This review focuses on the effect of DEHP in liver, a primary target organ for the pleiotropic effects of DEHP and other PPs. Specifically, liver parenchymal cells, identified herein as hepatocytes, are a major cell type that are responsive to exposure to PPs, including DEHP; however, other cell types in the liver may also play a role. The PP-induced increase in the number and size of peroxisomes in hepatocytes, so called 'peroxisome proliferation' that results in elevation of fatty acid metabolism, is a hallmark response to these compounds in the liver. A link between peroxisome proliferation and tumor formation has been a predominant, albeit questioned, theory to explain the cause of a hepatocarcinogenic effect of PPs. Other molecular events, such as induction of cell proliferation, decreased apoptosis, oxidative DNA damage, and selective clonal expansion of the initiated cells have been also been proposed to be critically involved in PP-induced carcinogenesis in liver. Considerable differences in the metabolism and molecular changes induced by DEHP in the liver, most predominantly the activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)alpha, have been identified between species. Both sexes of rats and mice develop adenomas and carcinomas after prolonged feeding with DEHP; however, limited DEHP-specific human data are available, even though exposure to DEHP and other phthalates is common in the general population. This likely constitutes the largest gap in our knowledge on the potential for DEHP to cause liver cancer in humans. Overall, it is believed that the sequence of key events that are relevant to DEHP-induced liver carcinogenesis in rodents involves the following events whereby the combination of the molecular signals and multiple pathways, rather than a single hallmark event (such as induction of PPAR alpha and peroxisomal genes, or cell proliferation) contribute to the formation of tumors: (i) rapid metabolism of the parental compound to primary and secondary bioactive metabolites that are readily absorbed and distributed throughout the body; (ii) receptor-independent activation of hepatic macrophages and production of oxidants; (iii) activation of PPAR alpha in hepatocytes and sustained increase in expression of peroxisomal and non-peroxisomal metabolism-related genes; (iv) enlargement of many hepatocellular organelles (peroxisomes, mitochondria, etc.); (v) rapid but transient increase in cell proliferation, and a decrease in apoptosis; (vi) sustained hepatomegaly; (vii) chronic low-level oxidative stress and accumulation of DNA damage; (viii) selective clonal expansion of the initiated cells; (ix) appearance of the pre-neoplastic nodules; (x) development of adenomas and carcinomas.
引用
收藏
页码:459 / 479
页数:21
相关论文