A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation

被引:80
作者
Choi, CS [1 ]
Kim, YW [1 ]
机构
[1] Sogang Univ, Dept Chem Engn, Seoul 100611, South Korea
关键词
calcium carbonate; shell formation; organic matrix; biocomposite material; Fourier self-deconvolution;
D O I
10.1016/S0142-9612(99)00120-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Calcium carbonate minerals are an integral part of many organisms. These biogenic minerals are all of original size, shape and high strength, and they are quite different from those found in their abiotic precipitates. It has been accepted that the formation, morphological development and crystallography of the biocomposites are controlled by the intrinsic molecular recognition of macromolecules. In this study, with the analyses of X-ray diffraction and scanning electron microscopy of the texture of biogenic minerals in oyster shells, we noted that the intracrystalline proteins deliberately reduce the coherence lengths of biogenic crystals compared to synthetic ones, leading to more isotropy. In order to understand the exact nature of the controlled nucleation and growth, we investigated the changes in protein conformation in vivo from the mineral-specific layers using Fourier self-deconvolution and Gaussian curve-fitting techniques. And via in vitro assays, we studied the relation of such changes to biomineral phase and morphology. We showed that the shell proteins in vivo are in the higher structural ordered state, and beta-antiparallel structure was predominant in each shell layer. Also, as the shell undergoes a change of calcium carbonate polymorphs from aragonite to calcite, significant alterations of the protein conformation with the denaturing of alpha-helix and beta-structure in the aragonitic layer is induced. These results provide a relationship between the effects of conformational changes on the nanostructure of biocomposites and the necessity of new synthetic strategies. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 44 条
[1]   A CHEMICAL-MODEL FOR THE COOPERATION OF SULFATES AND CARBOXYLATES IN CALCITE CRYSTAL NUCLEATION - RELEVANCE TO BIOMINERALIZATION [J].
ADDADI, L ;
MORADIAN, J ;
SHAY, E ;
MAROUDAS, NG ;
WEINER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (09) :2732-2736
[2]   INTERACTIONS BETWEEN ACIDIC PROTEINS AND CRYSTALS - STEREOCHEMICAL REQUIREMENTS IN BIOMINERALIZATION [J].
ADDADI, L ;
WEINER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (12) :4110-4114
[3]  
Addadi L., 1989, STEREOCHEMICAL STRUC, P133
[4]   INTERACTIONS OF VARIOUS SKELETAL INTRACRYSTALLINE COMPONENTS WITH CALCITE CRYSTALS [J].
ALBECK, S ;
AIZENBERG, J ;
ADDADI, L ;
WEINER, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (25) :11691-11697
[5]   Control of crystal phase switching and orientation by soluble mollusc-shell proteins [J].
Belcher, AM ;
Wu, XH ;
Christensen, RJ ;
Hansma, PK ;
Stucky, GD ;
Morse, DE .
NATURE, 1996, 381 (6577) :56-58
[6]   INTERCALATION OF SEA-URCHIN PROTEINS IN CALCITE - STUDY OF A CRYSTALLINE COMPOSITE-MATERIAL [J].
BERMAN, A ;
ADDADI, L ;
KVICK, A ;
LEISEROWITZ, L ;
NELSON, M ;
WEINER, S .
SCIENCE, 1990, 250 (4981) :664-667
[7]   INTERACTIONS OF SEA-URCHIN SKELETON MACROMOLECULES WITH GROWING CALCITE CRYSTALS - A STUDY OF INTRACRYSTALLINE PROTEINS [J].
BERMAN, A ;
ADDADI, L ;
WEINER, S .
NATURE, 1988, 331 (6156) :546-548
[8]  
CHARLOTTE MZ, 1996, CHEM MATER, V8, P679
[9]   Control of calcite crystal morphology by a peptide designed to bind to a specific surface [J].
DeOliveira, DB ;
Laursen, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (44) :10627-10631
[10]   PROTEIN SECONDARY STRUCTURES IN WATER FROM 2ND-DERIVATIVE AMIDE-I INFRARED-SPECTRA [J].
DONG, A ;
HUANG, P ;
CAUGHEY, WS .
BIOCHEMISTRY, 1990, 29 (13) :3303-3308