Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors -: art. no. 094507

被引:37
作者
Aoki, S [1 ]
Burkhalter, R
Fukugita, M
Hashimoto, S
Ishikawa, KI
Ishizuka, N
Iwasaki, Y
Kanaya, K
Kaneko, T
Kuramashi, Y
Okawa, M
Onogi, T
Tominaga, S
Tsutsui, N
Ukawa, A
Yamada, N
Yoshié, T
机构
[1] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Tsukuba, Ctr Computat Phys, Tsukuba, Ibaraki 3058577, Japan
[3] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan
[4] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan
[5] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
关键词
D O I
10.1103/PhysRevD.65.094507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N-f=2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16(3)x48) with intermediate quark masses (m(PS)/m(V)similar to0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N-f=1+1 system, and comparing the results with those of the established algorithms for N-f=2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16(3)x48,m(PS)/m(V)similar to0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4(3)x8 and 8(3)x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size.
引用
收藏
页码:945071 / 9450722
页数:22
相关论文
共 49 条
[1]   Improved multiboson algorithm [J].
Alexandrou, C ;
de Forcrand, P ;
D'Elia, M ;
Panagopoulos, H .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 :765-767
[2]   Efficiency of the UV-filtered multiboson algorithm [J].
Alexandrou, C ;
de Forcrand, P ;
D'Elia, M ;
Panagopoulos, H .
PHYSICAL REVIEW D, 2000, 61 (07)
[3]   Deconfinement phase transition in one-flavor QCD -: art. no. 034504. [J].
Alexandrou, C ;
Boriçi, A ;
Feo, A ;
de Forcrand, P ;
Galli, A ;
Jegerlehner, F ;
Takaishi, T .
PHYSICAL REVIEW D, 1999, 60 (03)
[4]   Non-trivial phase structure of Nf=3 QCD with O(a)-improved Wilson fermion at zero temperature [J].
Aoki, S ;
Burkhalter, R ;
Fukugita, M ;
Hashimoto, S ;
Ishikawa, KI ;
Ishizuka, N ;
Iwasaki, Y ;
Kanaya, K ;
Kaneko, T ;
Kuramashi, Y ;
Okawa, M ;
Onogi, T ;
Tominaga, S ;
Tsutsui, N ;
Ukawa, A ;
Yamada, N ;
Yoshié, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 :263-265
[5]   Light hadron spectroscopy with two flavors of O(a) improved dynamical quarks [J].
Aoki, S ;
Burkhalter, R ;
Fukugita, M ;
Hashimoto, S ;
Ishikawa, KI ;
Ishizuka, N ;
Iwasaki, Y ;
Kanaya, K ;
Kaneko, T ;
Kuramashi, Y ;
Okawa, M ;
Onogi, T ;
Tominaga, S ;
Tsutsui, N ;
Ukawa, A ;
Yamada, N ;
Yoshié, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 :233-236
[6]   First results on the running coupling in QCD with two massless flavours [J].
Bode, A ;
Frezzotti, R ;
Gehrmann, B ;
Hasenbusch, M ;
Heitger, J ;
Jansen, K ;
Kurth, S ;
Rolf, J ;
Simma, H ;
Sint, S ;
Sommer, R ;
Weisz, P ;
Wittig, H ;
Wolff, U .
PHYSICS LETTERS B, 2001, 515 (1-2) :49-56
[7]   SYSTEMATIC-ERRORS OF LUSCHERS FERMION METHOD AND ITS EXTENSIONS [J].
BORICI, A ;
DEFORCRAND, P .
NUCLEAR PHYSICS B, 1995, 454 (03) :645-660
[8]   Non-hermitian exact local bosonic algorithm for dynamical quarks [J].
Borrelli, A ;
deForcrand, P ;
Galli, A .
NUCLEAR PHYSICS B, 1996, 477 (03) :809-832
[9]   Ordering monomial factors of polynomials in the product representation [J].
Bunk, B ;
Elser, S ;
Frezzotti, R ;
Jansen, K .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 118 (2-3) :95-109
[10]   GLOBAL MONTE-CARLO ALGORITHMS FOR MANY-FERMION SYSTEMS [J].
CREUTZ, M .
PHYSICAL REVIEW D, 1988, 38 (04) :1228-1238