Erythropoietin-dependent autocrine secretion of tumor necrosis factor-alpha in hematopoietic cells modulates proliferation via MAP kinase-ERK-1/2 and does not require tyrosine docking sites in the EPO receptor

被引:12
作者
Chen, J
Jacobs-Helber, SM
Barber, DL
Sawyer, ST
机构
[1] Virginia Commonwealth Univ, Dept Pharmacol & Toxicol, Sch Med, Richmond, VA 23298 USA
[2] Univ Toronto, Hlth Network, Div Cellular & Mol Biol, Ontario Canc Inst, Toronto, ON, Canada
关键词
tumor necrosis factor-alpha; erythropoietin receptor; proliferation; MAPK pathways;
D O I
10.1016/j.yexcr.2004.04.009
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Primary erythroid cells and erythroid cell lines may synthesize and secrete tumor necrosis factor-alpha (TNF-alpha) following stimulation with erythropoietin (EPO). The effect of triggering TNF-alpha synthesis and secretion was investigated in erythroleukemia and myeloid cell lines: HCD57, DA3-EPOR, and BAF3-EPOR. The EPO-induced, membrane-bound form of autocrine TNF-alpha seemed to enhance proliferation of HCD57 and DA3-EPOR cells; however, the concentration of secreted autocrine/paracrine TNF-alpha was never sufficient to have an effect. Autocrine TNF-alpha acts through TNFRII receptors to stimulate proliferation. Modulation of mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK-1/2) activity by the membrane-bound form of autocrine TNF-alpha apparently played a central role in the control of EPO-dependent proliferation of HCD57 and DA3-EPOR cells. Primary erythroid cells and DA3-EPOR cells were found to express similar, high levels of both TNFRI and TNFRII, showing that differential expression of TNF-alpha receptors does not explain why primary cells are inhibited and DA3-EPOR cells are stimulated by autocrine TNF-alpha. BAF3 cells expressing a mutant EPOR with no cytoplasmic tyrosine residues were capable of triggering EPO-dependent TNF-alpha synthesis and secretion, indicating that tyrosine-docking sites in the EPOR were not required for EPO-dependent TNF-alpha secretion. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 57 条
[1]  
ANDREA AD, 1991, MOL CELL BIOL, P1980
[2]   Rac is activated by erythropoietin or interleukin-3 and is involved in activation of the Erk signaling pathway [J].
Arai, A ;
Kanda, E ;
Miura, O .
ONCOGENE, 2002, 21 (17) :2641-2651
[3]   ERYTHROPOIETIN AND INTERLEUKIN-2 ACTIVATE DISTINCT JAK KINASE FAMILY MEMBERS [J].
BARBER, DL ;
DANDREA, AD .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (10) :6506-6514
[4]   Erythropoietin and interleukin-3 activate tyrosine phosphorylation of CBL and association with CRK adaptor proteins [J].
Barber, DL ;
Mason, JM ;
Fukazawa, T ;
Reedquist, KA ;
Druker, BJ ;
Band, H ;
DAndrea, AD .
BLOOD, 1997, 89 (09) :3166-3174
[5]   A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells [J].
Black, RA ;
Rauch, CT ;
Kozlosky, CJ ;
Peschon, JJ ;
Slack, JL ;
Wolfson, MF ;
Castner, BJ ;
Stocking, KL ;
Reddy, P ;
Srinivasan, S ;
Nelson, N ;
Boiani, N ;
Schooley, KA ;
Gerhart, M ;
Davis, R ;
Fitzner, JN ;
Johnson, RS ;
Paxton, RJ ;
March, CJ ;
Cerretti, DP .
NATURE, 1997, 385 (6618) :729-733
[6]  
BONDURANT M, 1983, BLOOD, V61, P751
[7]   Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation [J].
Bouscary, D ;
Pene, F ;
Claessens, YE ;
Muller, O ;
Chrétien, S ;
Fontenay-Roupie, M ;
Gisselbrecht, S ;
Mayeux, P ;
Lacombe, C .
BLOOD, 2003, 101 (09) :3436-3443
[8]  
Branch DR, 1996, EXP HEMATOL, V24, P675
[9]  
BROXMEYER HE, 1986, J IMMUNOL, V136, P4487
[10]   PHOSPHORYLATION OF TYROSINE-503 IN THE ERYTHROPOIETIN RECEPTOR (EPR) IS ESSENTIAL FOR BINDING THE P85 SUBUNIT OF PHOSPHATIDYLINOSITOL (PI)-3-KINASE AND FOR EPR-ASSOCIATED PI-3-KINASE ACTIVITY [J].
DAMEN, JE ;
CUTLER, RL ;
JIAO, HY ;
YI, TL ;
KRYSTAL, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23402-23408