Predictive mapping of air pollution involving sparse spatial observations

被引:40
作者
Diem, JE [1 ]
Comrie, AC
机构
[1] Georgia State Univ, Dept Geog & Anthropol, Atlanta, GA 30303 USA
[2] Univ Arizona, Dept Geog & Reg Dev, Tucson, AZ 85721 USA
关键词
ozone; air pollution; linear regression; mapping; GIS;
D O I
10.1016/S0269-7491(01)00308-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A limited number of sample points greatly reduces the availability of appropriate spatial interpolation methods. This is a common problem when one attempts to accurately predict air pollution levels across a metropolitan area. Using ground-level ozone concentrations in the Tucson, Arizona, region as an example, this paper discusses the above problem and its solution, which involved the use of linear regression. A large range of temporal variability is used to compensate for sparse spatial observations (i.e. few ozone monitors). Gridded estimates of emissions of ozone precursor chemicals, which are developed, stored, and manipulated within a geographic information system, are the core predictor variables in multiple linear regression models. Cross-validation of the pooled models reveals an overall R-2 of 0.90 and approximately 7% error. Composite ozone maps predict that the highest ozone concentrations occur in a monitor-less area on the eastern edge of Tucson. The maps also reveal the need for ozone monitors in industrialized areas and in rural, forested areas. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 52 条
[1]  
ANSELIN L., 1988, SPATIAL ECONOMETRICS
[2]  
BERRY J, 1996, GIS WORLD, V9, P28
[3]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[4]   A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments [J].
Briggs, DJ ;
de Hoogh, C ;
Guiliver, J ;
Wills, J ;
Elliott, P ;
Kingham, S ;
Smallbone, K .
SCIENCE OF THE TOTAL ENVIRONMENT, 2000, 253 (1-3) :151-167
[5]   AN OBSERVATION-BASED MODEL FOR ANALYZING OZONE PRECURSOR RELATIONSHIPS IN THE URBAN ATMOSPHERE [J].
CARDELINO, CA ;
CHAMEIDES, WL .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1995, 45 (03) :161-180
[6]   GEOSTATISTICAL ANALYSIS AND VISUALIZATION OF HOURLY OZONE DATA [J].
CASADO, LS ;
ROUHANI, S ;
CARDELINO, CA ;
FERRIER, AJ .
ATMOSPHERIC ENVIRONMENT, 1994, 28 (12) :2105-2118
[7]   OZONE PRECURSOR RELATIONSHIPS IN THE AMBIENT ATMOSPHERE [J].
CHAMEIDES, WL ;
FEHSENFELD, F ;
RODGERS, MO ;
CARDELINO, C ;
MARTINEZ, J ;
PARRISH, D ;
LONNEMAN, W ;
LAWSON, DR ;
RASMUSSEN, RA ;
ZIMMERMAN, P ;
GREENBERG, J ;
MIDDLETON, P ;
WANG, T .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D5) :6037-6055
[8]   TIME-SERIES ANALYSIS OF RIVERSIDE, CALIFORNIA AIR QUALITY DATA [J].
CHOCK, DP ;
TERRELL, TR ;
LEVITT, SB .
ATMOSPHERIC ENVIRONMENT, 1975, 9 (11) :978-989
[9]  
CLARK TL, 1982, J APPL METEOROL, V21, P1662, DOI 10.1175/1520-0450(1982)021<1662:AOPMVT>2.0.CO
[10]  
2