Identifying sequence regions undergoing conformational change via predicted continuum secondary structure

被引:19
作者
Boden, Mikael [1 ]
Bailey, Timothy L.
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
关键词
D O I
10.1093/bioinformatics/btl198
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Conformational flexibility is essential to the function of many proteins, e.g. catalytic activity. To assist efforts in determining and exploring the functional properties of a protein, it is desirable to automatically identify regions that are prone to undergo conformational changes. It was recently shown that a probabilistic predictor of continuum secondary structure is more accurate than categorical predictors for structurally ambivalent sequence regions, suggesting that such models are suited to characterize protein flexibility. Results: We develop a computational method for identifying regions that are prone to conformational change directly from the amino acid sequence. The method uses the entropy of the probabilistic output of an 8-class continuum secondary structure predictor. Results for 171 unique amino acid sequences with well-characterized variable structure (identified in the 'Macromolecular movements database') indicate that the method is highly sensitive at identifying flexible protein regions, but false positives remain a problem. The method can be used to explore conformational flexibility of proteins (including hypothetical or synthetic ones) whose structure is yet to be determined experimentally.
引用
收藏
页码:1809 / 1814
页数:6
相关论文
共 32 条
[1]   Normal modes for predicting protein motions: A comprehensive database assessment and associated Web tool [J].
Alexandrov, V ;
Lehnert, U ;
Echols, N ;
Milburn, D ;
Engelman, D ;
Gerstein, M .
PROTEIN SCIENCE, 2005, 14 (03) :633-643
[2]   Continuum secondary structure captures protein flexibility [J].
Anderson, CAF ;
Palmer, AG ;
Brunak, S ;
Rost, B .
STRUCTURE, 2002, 10 (02) :175-184
[3]   Assessing the accuracy of prediction algorithms for classification: an overview [J].
Baldi, P ;
Brunak, S ;
Chauvin, Y ;
Andersen, CAF ;
Nielsen, H .
BIOINFORMATICS, 2000, 16 (05) :412-424
[4]   A simple method to predict protein flexibility using secondary chemical shifts [J].
Berjanskii, MV ;
Wishart, DS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (43) :14970-14971
[5]   Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures [J].
Bodén, M ;
Yuan, Z ;
Bailey, TL .
BMC BIOINFORMATICS, 2006, 7 (1)
[6]   A neural-network-based method for predicting protein stability changes upon single point mutations [J].
Capriotti, Emidio ;
Fariselli, Piero ;
Casadio, Rita .
BIOINFORMATICS, 2004, 20 :63-68
[7]   Protein flexibility is an important component of structure-based drug discovery [J].
Carlson, HA .
CURRENT PHARMACEUTICAL DESIGN, 2002, 8 (17) :1571-1578
[8]   DSSPcont: continuous secondary structure assignments for proteins [J].
Carter, P ;
Andersen, CAF ;
Rost, B .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3293-3295
[9]   Prediction of protein stability changes for single-site mutations using support vector machines [J].
Cheng, JL ;
Randall, A ;
Baldi, P .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (04) :1125-1132
[10]   PREDICTION OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
BIOCHEMISTRY, 1974, 13 (02) :222-245