Tracking a ballistic target: Comparison of several nonlinear filters

被引:261
作者
Farina, A
Ristic, B
Benvenuti, D
机构
[1] Alenia Marconi Syst, Radar & Technol Div, I-00131 Rome, Italy
[2] Def Sci & Technol Org, Surveillance Syst Div, Salisbury, SA 5108, Australia
关键词
D O I
10.1109/TAES.2002.1039404
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper studies the problem of tracking a ballistic object in the reentry phase by processing radar measurements. A suitable (highly nonlinear) model of target motion is developed and the theoretical Cramer-Rao lower bounds (CRLB) of estimation error are derived. The estimation performance (error mean and standard deviation; consistency test) of the following nonlinear filters is compared: the extended Kalman filter (EKF), the statistical linearization, the particle filtering, and the unscented Kalman filter (UKF). The simulation results favor the EKF; it combines the statistical efficiency with a modest computational load. This conclusion is valid when the target ballistic coefficient is a priori known.
引用
收藏
页码:854 / 867
页数:14
相关论文
共 25 条
[1]  
[Anonymous], 2001, PROC WORKSHOP ESTIMA
[2]  
[Anonymous], 2000, ADV NEURAL INF PROCE
[3]  
Bar-Shalom Yaakov., 1993, ESTIMATION TRACKING
[4]  
CHAMBERLAIN S, 1993, P 1 EUR C SPAC DEBR, P37
[5]  
CHANG CB, 1977, IEEE T AUTOMAT CONTR, V22, P99, DOI 10.1109/TAC.1977.1101412
[6]   ADAPTIVE MODEL ARCHITECTURE AND EXTENDED KALMAN-BUCY FILTERS [J].
COSTA, PJ .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1994, 30 (02) :525-533
[7]   EXACT FINITE-DIMENSIONAL NONLINEAR FILTERS [J].
DAUM, FE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (07) :616-622
[8]  
DAUM FE, 1995, P SOC PHOTO-OPT INS, V2561, P252, DOI 10.1117/12.217702
[9]  
Doucet A., 2001, SEQUENTIAL MONTE CAR
[10]  
Farina A., 1985, Radar Data Processing, Vol. I: Introduction and Tracking, Vol. II: Advanced Topics and Applications, VI