Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition

被引:140
作者
Sheng, S
Carattino, MD
Bruns, JB
Hughey, RP
Kleyman, TR
机构
[1] Univ Pittsburgh, Sch Med, Dept Med, Renal Electrolyte Div, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Sch Med, Dept Cell Biol & Physiol, Pittsburgh, PA 15261 USA
关键词
amiloride; open probability; voltage clamp; Xenopus laevis oocyte; mutagenesis;
D O I
10.1152/ajprenal.00439.2005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Epithelial Na+ channels (ENaC) are inhibited by extracellular Na+, a process referred to as Na+ self-inhibition. We previously demonstrated that mutation of key residues within two furin cleavage consensus sites in alpha, or one site in gamma, blocked subunit proteolysis and inhibited channel activity when mutant channels were expressed in Xenopus laevis oocytes (Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, and Kleyman TR. J Biol Chem 279: 18111-18114, 2004). Cleavage of subunits was also blocked by these mutations when expressed in Madin-Darby canine kidney cells, and both subunit cleavage and channel activity were blocked when wild-type subunits were expressed in furin-deficient Chinese hamster ovary cells. We now report that channels with mutant alpha-subunits lacking either one or both furin cleavage sites exhibited a marked enhancement of the Na+ self-inhibition response, while channels with a mutant gamma-subunit showed a modestly enhanced Na+ self-inhibition response. Analysis of Na+ self-inhibition at varying [Na+] indicates that channels containing mutant alpha-subunits exhibit an increased Na+ affinity. At the single-channel level, channels with a mutant alpha-subunit had a low open probability (P-o) in the presence of a high external [Na+] in the patch pipette. Po dramatically increased when trypsin was also present, or when a low external [Na+] was in the patch pipette. Our results suggest that furin cleavage of ENaC subunits activates the channels by relieving Na+ self-inhibition and that activation requires that the alpha-subunit be cleaved twice. Moreover, we demonstrate for the first time a clear relationship between ENaC Po and extracellular [Na+], supporting the notion that Na+ self-inhibition reflects a Po reduction due to high extracellular [Na+].
引用
收藏
页码:F1488 / F1496
页数:9
相关论文
共 40 条
[1]  
Adachi M, 2001, J AM SOC NEPHROL, V12, P1114, DOI 10.1681/ASN.V1261114
[2]   A new subunit of the epithelial Na+ channel identifies regions involved in Na+ self-inhibition [J].
Babini, E ;
Geisler, HS ;
Siba, M ;
Gründer, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (31) :28418-28426
[3]   Zn2+ and H+ are coactivators of acid-sensing ion channels [J].
Baron, A ;
Schaefer, L ;
Lingueglia, E ;
Champigny, G ;
Lazdunski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35361-35367
[4]   Protons at the gate: DEG/ENaC ion channels help us feel and remember [J].
Bianchi, L ;
Driscoll, M .
NEURON, 2002, 34 (03) :337-340
[5]   Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport [J].
Caldwell, RA ;
Boucher, RC ;
Stutts, MJ .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2005, 288 (05) :L813-L819
[6]   Serine protease activation of near-silent epithelial Na+ channels [J].
Caldwell, RA ;
Boucher, RC ;
Stutts, MJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2004, 286 (01) :C190-C194
[7]   Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes [J].
Chraïbi, A ;
Vallet, V ;
Firsov, D ;
Hess, SK ;
Horisberger, JD .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 111 (01) :127-138
[8]   Dual effect of temperature on the human epithelial Na+ channel [J].
Chraïbi, A ;
Horisberger, JD .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2003, 447 (03) :316-320
[9]   Na self inhibition of human epithelial Na channel:: Temperature dependence and effect of extracellular proteases [J].
Chraïbi, A ;
Horisberger, AD .
JOURNAL OF GENERAL PHYSIOLOGY, 2002, 120 (02) :133-145
[10]   The extracellular domain determines the kinetics of desensitization in acid-sensitive ion channel 1 [J].
Coric, T ;
Zhang, P ;
Todorovic, N ;
Canessa, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) :45240-45247