A relative evaluation of multiclass image classification by support vector machines

被引:758
作者
Foody, GM [1 ]
Mathur, A [1 ]
机构
[1] Univ Southampton, Sch Geog, Southampton SO17 1BJ, Hants, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2004年 / 42卷 / 06期
关键词
accuracy comparison; remote sensing; supervised classification; support vector machine (SVM); training set;
D O I
10.1109/TGRS.2004.827257
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Support vector machines (SVMs) have considerable potential as classifiers of remotely sensed data. A constraint on their application in remote sensing has been their binary nature, requiring multiclass classifications to be based upon a large number of binary analyses. Here, an approach for multiclass classification of airborne sensor data by a single SVM analysis is evaluated against a series of classifiers that are widely used in remote sensing, with particular regard to the effect of training set size on classification accuracy. In addition to the SVM, the same datasets were classified using a discriminant analysis, decision tree, and multilayer perceptron neural network. The accuracy statements of the classifications derived from the different classifiers were compared in a statistically rigorous fashion that accommodated for the related nature of the samples used in the analyses. For each classification technique, accuracy was positively related with the size of the training set. In general, the most accurate classifications were derived from the SVM approach, and with the largest training set the SVM classification was significantly (p < 0.05) more accurate (93.75%) than that derived from the discriminant analysis (90.00%) and decision tree algorithms (90.31%). Although each classifier could yield a very accurate classification, >90% correct, the classifiers differed in the ability to correctly label individual cases and so may be suitable candidates for an ensemble-based approach to classification.
引用
收藏
页码:1335 / 1343
页数:9
相关论文
共 44 条
[1]   K-SVCR.: A support vector machine for multi-class classification [J].
Angulo, C ;
Parra, X ;
Català, A .
NEUROCOMPUTING, 2003, 55 (1-2) :57-77
[2]  
[Anonymous], P 27 AIPR WORKSH ADV, DOI DOI 10.1117/12.339824
[3]   Log-linear modelling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications [J].
Arora, MK ;
Foody, GM .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (04) :785-798
[4]   A flexible classification approach with optimal generalisation performance: support vector machines [J].
Belousov, AI ;
Verzakov, SA ;
von Frese, J .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 64 (01) :15-25
[5]   NEURAL NETWORK APPROACHES VERSUS STATISTICAL-METHODS IN CLASSIFICATION OF MULTISOURCE REMOTE-SENSING DATA [J].
BENEDIKTSSON, JA ;
SWAIN, PH ;
ERSOY, OK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04) :540-552
[6]   The influence of relative sample size in training artificial neural networks [J].
Blamire, PA .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (01) :223-230
[7]   Multiple classifiers applied to multisource remote sensing data [J].
Briem, GJ ;
Benediktsson, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2291-2299
[8]   Linear spectral mixture models and support vector machines for remote sensing [J].
Brown, M ;
Lewis, HG ;
Gunn, SR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (05) :2346-2360
[9]   Support vector machines for optimal classification and spectral unmixing [J].
Brown, M ;
Gunn, SR ;
Lewis, HG .
ECOLOGICAL MODELLING, 1999, 120 (2-3) :167-179
[10]  
Christiani N., 2000, An Introduction to Support Vector Machines and other kernel-based learning methods