Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives

被引:60
作者
Hsu, Ning-Yih
Yen, Shi-Chern [1 ]
Jeng, King-Tsai
Chien, Chun-Ching
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Athens 10676, Greece
[2] INER, Taoyuan 32546, Taiwan
关键词
direct methanol fuel cell; dynamic hydrogen electrode; methanol electrooxidation; electrochemical impedance spectroscopy; constant phase element;
D O I
10.1016/j.jpowsour.2006.03.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, electrochemical impedance was used to analyze the reaction kinetics and interfacial characteristics of an anode in a direct methanol fuel cell (DMFC). An advanced equivalent-circuit model is proposed. The new model incorporates constant phase elements (CPEs) rather than conventional capacitors in the equivalent-circuits taking into account the porous structure of the anode, particularly that in the catalyst layer and at the anode/membrane interface. It effectively simulated the electrochemical characteristics of a DMFC porous anode. The impedance model incorporates the interface factor, resulting in excellent matches between the simulation results and the experimental data in the Nyquist and the Bode plots over a wide range of frequencies. In addition, the differences among methanol electrooxidation reaction kinetics at various operating potentials are clearly observed and satisfactorily explained using electrochemical impedance spectroscopy and the CPE-based equivalent-circuit model. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:232 / 239
页数:8
相关论文
共 26 条
[1]   Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution [J].
Alves, VA ;
da Silva, LA ;
Boodts, JFC .
ELECTROCHIMICA ACTA, 1998, 44 (8-9) :1525-1534
[2]   Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J].
Bae, JM ;
Honma, I ;
Murata, M ;
Yamamoto, T ;
Rikukawa, M ;
Ogata, N .
SOLID STATE IONICS, 2002, 147 (1-2) :189-194
[3]   Distinguishability of equivalent circuits containing CPEs: Part I. Theoretical part [J].
Berthier, F ;
Diard, JP ;
Michel, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 510 (1-2) :1-11
[4]   Identification of O2 reduction processes at yttria stabilized zirconia|doped lanthanum manganite interface [J].
Chen, XJ ;
Khor, KA ;
Chan, SH .
JOURNAL OF POWER SOURCES, 2003, 123 (01) :17-25
[5]   Electrochemical impedance study of electrode-membrane assemblies in PEM fuel cells I.: Electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes [J].
Ciureanu, M ;
Wang, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (11) :4031-4040
[6]   Dispersion and absorption in dielectrics I. Alternating current characteristics [J].
Cole, KS ;
Cole, RH .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (04) :341-351
[7]   AC impedance spectroscopy: a new equivalent circuit for titania thick film humidity sensors [J].
Faia, PM ;
Furtado, CS ;
Feffeira, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 107 (01) :353-359
[8]   Impedance of vapor feed direct methanol fuel cells-polarization dependence of elementary processes at the anode [J].
Fukunaga, H ;
Ishida, T ;
Teranishi, N ;
Arai, C ;
Yamada, K .
ELECTROCHIMICA ACTA, 2004, 49 (13) :2123-2129
[9]   Structural control and impedance analysis of cathode for direct methanol fuel cell [J].
Furukawa, K ;
Okajima, K ;
Sudoh, M .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :9-14
[10]   Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy [J].
Hu, JM ;
Zhang, JQ ;
Cao, CN .
PROGRESS IN ORGANIC COATINGS, 2003, 46 (04) :273-279