Multivariate regression depth

被引:7
作者
Bern, M
Eppstein, D
机构
[1] Xerox Corp, Palo Alto Res Ctr, Palo Alto, CA 94304 USA
[2] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
关键词
D O I
10.1007/s00454-001-0092-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The regression depth of a hyperplane with respect to a set of n points in R(d) is the minimum number of points the hyperplane must pass through in a rotation to vertical. We generalize hyperplane regression depth to k-flats for any k between 0 and d - 1. The k = 0 case gives the classical notion of center points. We prove that for any k and d, deep k-flats exist, that is, for any set of n points there always exists a k-flat with depth at least a constant fraction of n. As a consequence, we derive a linear-time (1 + epsilon) -approximation algorithm for the deepest flat. We also show how to compute the regression depth in time 0 (n(d-2) + n log n) when 1 less than or equal to k less than or equal to d - 2.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 26 条
[1]   BOUNDING THE PIERCING NUMBER [J].
ALON, N ;
KALAI, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (3-4) :245-256
[2]  
Amenta N, 2000, DISCRETE COMPUT GEOM, V23, P305, DOI 10.1007/s004540010001
[3]  
[Anonymous], P ACM STOC 1985
[4]  
Bern M, 2001, SIAM PROC S, P700
[5]  
Bern M., 2000, P 16 ANN S COMP GEOM, P315, DOI [10.1145/336154.336218, DOI 10.1145/336154.336218]
[6]  
DOLNIKOV VL, 1992, MAT ZAMETKI, V52, P27
[7]  
EDELSBRUNNER H, 1987, EATCS MONOGRAPHS THE, V10
[8]   The catline for deep regression [J].
Hubert, M ;
Rousseeuw, PJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 66 (02) :270-296
[9]  
Langerman S, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P54
[10]  
LIU ZJ, 1992, STATISTICS, V23, P109