Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles

被引:219
作者
Sullivan, R. C. [1 ]
Moore, M. J. K. [1 ]
Petters, M. D. [2 ]
Kreidenweis, S. M. [2 ]
Roberts, G. C. [3 ]
Prather, K. A. [1 ,3 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
SINGLE-PARAMETER REPRESENTATION; HETEROGENEOUS CHEMISTRY; SURFACE-TENSION; CCN ACTIVATION; AEROSOL; SULFATE; NUCLEI; PRECIPITATION; POLLUTION; DROPLETS;
D O I
10.5194/acp-9-3303-2009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric mineral dust particles can alter cloud properties and thus climate by acting as cloud condensation nuclei (CCN) that form cloud droplets. The CCN activation properties of various calcium mineral dust particles were studied experimentally to investigate the consequences of field observations showing the segregation of sulphate from nitrate and chloride between individual aged Asian dust particles, and the enrichment of oxalic acid in Asian dust. Each mineral's observed apparent hygroscopicity was primarily controlled by its solubility, which determines the degree to which the mineral's intrinsic hygroscopicity can be expressed. The significant increase in hygroscopicity caused by mixing soluble hygroscopic material with insoluble mineral particles is also presented. Insoluble minerals including calcium carbonate, representing fresh unprocessed dust, and calcium sulphate, representing atmospherically processed dust, had similarly small apparent hygroscopicities. Their activation is accurately described by a deliquescence limit following the Kelvin effect and corresponded to an apparent single-hygroscopicity parameter, kappa, of similar to 0.001. Soluble calcium chloride and calcium nitrate, representing atmospherically processed mineral dust particles, were much more hygroscopic, activating similar to ammonium sulphate with kappa similar to 0.5. Calcium oxalate monohydrate (kappa=0.05) was significantly less CCN-active than oxalic acid (kappa=0.3), but not as inactive as its low solubility would predict. These results indicate that the common assumption that all mineral dust particles become more hygroscopic and CCN-active after atmospheric processing should be revisited. Calcium sulphate and calcium oxalate are two realistic proxies for aged mineral dust that remain non-hygroscopic. The dust's apparent hygroscopicity will be controlled by its chemical mixing state, which is determined by its mineralogy and the chemical reaction pathways it experiences during transport.
引用
收藏
页码:3303 / 3316
页数:14
相关论文
共 65 条
[1]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[2]   Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols [J].
Andreae, M. O. ;
Rosenfeld, D. .
EARTH-SCIENCE REVIEWS, 2008, 89 (1-2) :13-41
[3]   CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase [J].
Bilde, M ;
Svenningsson, B .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2004, 56 (02) :128-134
[4]   Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species [J].
Broekhuizen, K ;
Kumar, PP ;
Abbatt, JPD .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (01) :L011071-5
[5]   Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity [J].
Carrico, CM ;
Kus, P ;
Rood, MJ ;
Quinn, PK ;
Bates, TS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D23)
[6]   Modeling the mineralogy of atmospheric dust sources [J].
Claquin, T ;
Schulz, M ;
Balkanski, YJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D18) :22243-22256
[7]   STUDIES OF CONCENTRATED ELECTROLYTE-SOLUTIONS USING THE ELECTRODYNAMIC BALANCE .1. WATER ACTIVITIES FOR SINGLE-ELECTROLYTE SOLUTIONS [J].
COHEN, MD ;
FLAGAN, RC ;
SEINFELD, JH .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (17) :4563-4574
[8]   Measurements of the concentration and composition of nuclei for cirrus formation [J].
DeMott, PJ ;
Cziczo, DJ ;
Prenni, AJ ;
Murphy, DM ;
Kreidenweis, SM ;
Thomson, DS ;
Borys, R ;
Rogers, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :14655-14660
[9]   Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles [J].
Eastwood, Michael L. ;
Cremel, Sebastien ;
Gehrke, Clemens ;
Girard, Eric ;
Bertram, Allan K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113
[10]   Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition [J].
Facchini, MC ;
Decesari, S ;
Mircea, M ;
Fuzzi, S ;
Loglio, G .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (28) :4853-4857