Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus

被引:120
作者
Koyama, R
Yamada, MK
Fujisawa, S
Katoh-Semba, R
Matsuki, N
Ikegaya, Y
机构
[1] Univ Tokyo, Grad Sch Pharmaceut Sci, Chem Pharmacol Lab, Bunkyo Ku, Tokyo 1130033, Japan
[2] Aichi Human Serv Ctr, Inst Dev Res, Aichi 4800392, Japan
关键词
hippocampus; granule cell; mossy fiber; epilepsy; sprouting; BDNF;
D O I
10.1523/JNEUROSCI.2045-04.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Aberrant sprouting and synaptic reorganization of the mossy fiber (MF) axons are commonly found in the hippocampus of temporal lobe epilepsy patients and result in the formation of excitatory feedback loops in the dentate gyrus, a putative cellular basis for recurrent epileptic seizures. Using ex vivo hippocampal cultures, we show that prolonged hyperactivity induces MF sprouting and the resultant network reorganizations and that brain-derived neurotrophic factor (BDNF) is necessary and sufficient to evoke these pathogenic plasticities. Hyperexcitation induced an upregulation of BDNF protein expression in the MF pathway, an effect mediated by L-type Ca2+ channels. The neurotrophin receptor tyrosine kinase (Trk)B inhibitor K252a or function-blocking anti-BDNF antibody prevented hyperactivity-induced MF sprouting. Even under blockade of neural activity, local application of BDNF to the hilus, but not other subregions, was capable of initiating MF axonal remodeling, eventually leading to dentate hyperexcitability. Transfecting granule cells with dominant-negative TrkB prevented axonal branching. Thus, excessive activation of L-type Ca2+ channels causes granule cells to express BDNF, and extracellularly released BDNF stimulates TrkB receptors present on the hilar segment of the MFs to induce axonal branching, which may establish hyperexcitable dentate circuits.
引用
收藏
页码:7215 / 7224
页数:10
相关论文
共 92 条
[1]  
Amaral David G., 1995, P443
[2]   GENESIS OF EPILEPTIC INTERICTAL SPIKES - NEW KNOWLEDGE OF CORTICAL FEEDBACK-SYSTEMS SUGGESTS A NEUROPHYSIOLOGICAL EXPLANATION OF BRIEF PAROXYSMS [J].
AYALA, GF ;
DICHTER, M ;
GUMNIT, RJ ;
MATSUMOTO, H ;
SPENCER, WA .
BRAIN RESEARCH, 1973, 52 (MAR30) :1-17
[3]  
Baba A, 2003, J NEUROSCI, V23, P7737
[4]   SYNAPTIC REORGANIZATION BY MOSSY FIBERS IN HUMAN EPILEPTIC FASCIA-DENTATA [J].
BABB, TL ;
KUPFER, WR ;
PRETORIUS, JK ;
CRANDALL, PH ;
LEVESQUE, MF .
NEUROSCIENCE, 1991, 42 (02) :351-363
[5]   Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ [J].
Balkowiec, A ;
Katz, DM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (19) :7417-7423
[6]   Hippocampal mossy fiber sprouting is not impaired in brain-derived neurotrophic factor-deficient mice [J].
Bender, R ;
Heimrich, B ;
Meyer, M ;
Frotscher, M .
EXPERIMENTAL BRAIN RESEARCH, 1998, 120 (03) :399-402
[7]   REGULATION OF NEUROTROPHIN AND TRKA, TRKB AND TRKC TYROSINE KINASE RECEPTOR MESSENGER-RNA EXPRESSION IN KINDLING [J].
BENGZON, J ;
KOKAIA, Z ;
ERNFORS, P ;
KOKAIA, M ;
LEANZA, G ;
NILSSON, OG ;
PERSSON, H ;
LINDVALL, O .
NEUROSCIENCE, 1993, 53 (02) :433-446
[8]   BDNF and epilepsy: too much of a good thing? [J].
Binder, DK ;
Croll, SD ;
Gall, CM ;
Scharfman, HE .
TRENDS IN NEUROSCIENCES, 2001, 24 (01) :47-53
[9]   INTERACTION OF TAU WITH THE NEURAL PLASMA-MEMBRANE MEDIATED BY TAU AMINO-TERMINAL PROJECTION DOMAIN [J].
BRANDT, R ;
LEGER, J ;
LEE, G .
JOURNAL OF CELL BIOLOGY, 1995, 131 (05) :1327-1340
[10]   ATTENUATION OF MICROTUBULE-ASSOCIATED PROTEIN 1B EXPRESSION BY ANTISENSE OLIGODEOXYNUCLEOTIDES INHIBITS INITIATION OF NEURITE OUTGROWTH [J].
BRUGG, B ;
REDDY, D ;
MATUS, A .
NEUROSCIENCE, 1993, 52 (03) :489-496