Soft computing techniques for the design of mobile robot behaviors

被引:21
作者
Hoffmann, F [1 ]
机构
[1] Univ Calif Berkeley, Berkeley Initiat Soft Comp, Div Comp Sci, Berkeley, CA 94720 USA
关键词
genetic algorithms; fuzzy control; mobile robot; soft computing;
D O I
10.1016/S0020-0255(99)00120-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a soft computing approach to robot behavior design. Evolutionary algorithms adapt a wall following behavior implemented by means of fuzzy control rules, A messy coding scheme for fuzzy rules reduces the size and complexity of the rule base, with the result, that the fuzzy control design remains tractable for the genetic algorithm. An evolution strategy tunes the scaling factors for the controller's input and output and optimizes the adjustment of the sensors on the robot. A neural network classifies the basic geometric features of the local environment based on previous perceptions of the sonar sensors. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:241 / 258
页数:18
相关论文
共 26 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]  
[Anonymous], GENETIC ALGORITHMS E
[3]  
BACK T, 1996, P 5 INT C IPMU INF P, P659
[4]  
BEOM HR, 1995, IEEE T SYST MAN CYB, V25, P464, DOI 10.1109/21.364859
[5]  
BONARINI A, 1996, 2 ONL WORKSH EV COMP
[6]  
BRAUNSTINGL R, 1995, P FUZZ IEEE 95, V5, P77
[7]   GENETICS-BASED MACHINE LEARNING AND BEHAVIOR-BASED ROBOTICS - A NEW SYNTHESIS [J].
DORIGO, M ;
SCHNEPF, U .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (01) :141-154
[8]  
Goldberg D., 1989, COMPLEX SYST, V3, P493, DOI DOI 10.1007/978-1-4757-3643-4
[9]  
GREFENSTETTE JJ, 1994, P MACH LEARN WORKSH
[10]  
HOFFMANN F, 1996, GENETIC ALGORITHMS S