Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer

被引:234
作者
Adachi, M
Fukuda, M
Nishida, E [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Biophys, Sakyo Ku, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Dept Cell & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan
关键词
nuclear translocation; signal transduction; tyrosine phosphorylation;
D O I
10.1093/emboj/18.19.5347
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In response to extracellular stimuli, mitogen-activated protein kinase (MAPK, also known as ERK) translocates from the cytoplasm to the nucleus. MAP kinase kinase (MAPKK, also know as MEK), which possesses a nuclear export signal (NES), acts as a cytoplasmic anchor of MAPK, Here we show evidence that tyrosine (Tyr190 in Xenopus MPK1/ERK2) phosphorylation of MAPK by MAPKK is necessary and sufficient for the dissociation of the MAPKK-MAPK complex, and that the dissociation of the complex is required for the nuclear translocation of MAPK. We then show that nuclear entry of MAPK through a nuclear pore occurs via two distinct mechanisms. Nuclear import of wildtype MAPK (mol, wt 42 kDa) was induced by activation of the MAPK pathway even in the presence of wheat germ agglutinin or dominant-negative Ran, whereas nuclear import of beta-galactosidase (beta-gal)-fused MAPK (mol, wt 160 kDa), which occurred in response to stimuli, was completely blocked by these inhibitors. Moreover, while a dimerization-deficient mutant of MAPK was able to translocate to the nucleus upon stimulation, this mutant MAPK, when fused to beta-gal, became unable to enter the nucleus. These results suggest that monomeric and dimeric forms of MAPK enter the nucleus by passive diffusion and active transport mechanisms, respectively.
引用
收藏
页码:5347 / 5358
页数:12
相关论文
共 45 条
  • [1] ALESSI DR, 1993, ONCOGENE, V8, P2015
  • [2] Bardwell L, 1996, MOL CELL BIOL, V16, P3637
  • [3] RANGAP1 INDUCED GTPASE ACTIVITY OF NUCLEAR RAS-RELATED RAN
    BISCHOFF, FR
    KLEBE, C
    KRETSCHMER, J
    WITTINGHOFER, A
    PONSTINGL, H
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (07) : 2587 - 2591
  • [4] SIGNAL-TRANSDUCTION VIA THE MAP KINASES - PROCEED AT YOUR OWN RSK
    BLENIS, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) : 5889 - 5892
  • [5] BRONDELLO JM, 1995, ONCOGENE, V10, P1895
  • [6] Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry
    Brunet, A
    Roux, D
    Lenormand, P
    Dowd, S
    Keyse, S
    Pouysségur, J
    [J]. EMBO JOURNAL, 1999, 18 (03) : 664 - 674
  • [7] Activation mechanism of the MAP kinase ERK2 by dual phosphorylation
    Canagarajah, BJ
    Khokhlatchev, A
    Cobb, MH
    Goldsmith, EJ
    [J]. CELL, 1997, 90 (05) : 859 - 869
  • [8] NUCLEAR-LOCALIZATION AND REGULATION OF ERK-ENCODED AND RSK-ENCODED PROTEIN-KINASES
    CHEN, RH
    SARNECKI, C
    BLENIS, J
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (03) : 915 - 927
  • [9] DAVIS RJ, 1993, J BIOL CHEM, V268, P14553
  • [10] Dickmanns A, 1996, J CELL SCI, V109, P1449