Molecular dynamics simulations with constrained roto-translational motions: Theoretical basis and statistical mechanical consistency

被引:96
作者
Amadei, A [1 ]
Chillemi, G [1 ]
Ceruso, MA [1 ]
Grottesi, A [1 ]
Di Nola, A [1 ]
机构
[1] Univ Rome La Sapienza, Dept Chem, I-00185 Rome, Italy
关键词
D O I
10.1063/1.480557
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
From a specific definition of the roto-translational (external) and intramolecular (internal) coordinates, a constrained dynamics algorithm is derived for removing the roto-translational motions during molecular dynamics simulations, within the leap-frog integration scheme. In the paper the theoretical basis of this new method and its statistical mechanical consistency are reported, together with two applications. (C) 2000 American Institute of Physics. [S0021-9606(00)50201-3].
引用
收藏
页码:9 / 23
页数:15
相关论文
共 17 条
[1]   Extensions of the quasi-Gaussian entropy theory [J].
Amadei, A ;
Apol, MEF ;
Berendsen, HJC .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (05) :1893-1912
[2]   On the use of the quasi-Gaussian entropy theory in noncanonical ensembles. I. Prediction of temperature dependence of thermodynamic properties [J].
Amadei, A ;
Apol, MEF ;
Berendsen, HJC .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (08) :3004-3016
[3]  
Berendsen H. J. C., 1995, GROMACS USER MANUAL
[4]   A COMPARISON OF CONSTANT ENERGY, CONSTANT TEMPERATURE AND CONSTANT PRESSURE ENSEMBLES IN MOLECULAR-DYNAMICS SIMULATIONS OF ATOMIC LIQUIDS [J].
BROWN, D ;
CLARKE, JHR .
MOLECULAR PHYSICS, 1984, 51 (05) :1243-1252
[5]   The calculation of free-energy differences by constrained molecular-dynamics simulations [J].
den Otter, WK ;
Briels, WJ .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11) :4139-4146
[6]   Some studies concerning rotating axes and polyatomic molecules [J].
Eckart, C .
PHYSICAL REVIEW, 1935, 47 (07) :552-558
[7]   NON-NEWTONIAN MOLECULAR-DYNAMICS [J].
EVANS, DJ ;
MORRISS, GP .
COMPUTER PHYSICS REPORTS, 1984, 1 (06) :297-343
[8]  
FIXMAN M, 1974, P NATL ACAD SCI USA, V69, P1527
[9]  
FRISCH M, 1994, GAUSSIAN 94
[10]  
Gallavotti G., 1983, ELEMENTS MECH