Mammalian nuclear transfer

被引:101
作者
Meissner, Alexander
Jaenisch, Rudolf
机构
[1] MIT, Cambridge, MA 02142 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
nuclear transfer; cloning; stem cells; epigenetics; DNA methylation;
D O I
10.1002/dvdy.20915
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Differentiated cells, therefore, retain all the genetic information necessary to generate an entire organism (nuclear totipotency). Nuclear transfer (NT) was initially developed to test experimentally this concept by cloning animals from differentiated cells. It has, since then, been used to study the role of genetic and epigenetic alterations during development and disease. In this review, we highlight some of the milestones in mammalian NT reached in the 50 years after the first nuclear transplantations in frogs. We also address problems associated with mammalian nuclear transfer and provide a survey on current NT and stem cell technology. In the long term, nuclear transfer or alternative strategies aim to generate customized pluripotent cells, which would be invaluable to medical research and therapy.
引用
收藏
页码:2460 / 2469
页数:10
相关论文
共 109 条
[1]   Production of goats by somatic cell nuclear transfer [J].
Baguisi, A ;
Behboodi, E ;
Melican, DT ;
Pollock, JS ;
Destrempes, MM ;
Cammuso, C ;
Williams, JL ;
Nims, SD ;
Porter, CA ;
Midura, P ;
Palacios, MJ ;
Ayres, SL ;
Denniston, RS ;
Hayes, ML ;
Ziomek, CA ;
Meade, HM ;
Godke, RA ;
Gavin, WG ;
Overström, EW ;
Echelard, Y .
NATURE BIOTECHNOLOGY, 1999, 17 (05) :456-461
[2]   Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice [J].
Barberi, T ;
Klivenyi, P ;
Calingasan, NY ;
Lee, H ;
Kawamata, H ;
Loonam, K ;
Perrier, AL ;
Bruses, J ;
Rubio, ME ;
Topf, N ;
Tabar, V ;
Harrison, NL ;
Beal, MF ;
Moore, MAS ;
Studer, L .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1200-1207
[3]   The DNA methyltransferases of mammals [J].
Bestor, TH .
HUMAN MOLECULAR GENETICS, 2000, 9 (16) :2395-2402
[4]   Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle [J].
Betts, DH ;
Bordignon, V ;
Hill, JR ;
Winger, Q ;
Westhusin, ME ;
Smith, LC ;
King, WA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :1077-1082
[5]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[6]  
BLELLOCH R, 2006, STEM CELLS, V18
[7]  
Blelloch RH, 2004, P NATL ACAD SCI USA, V101, P13985, DOI 10.1073/pnas.0405015101
[8]   Oct4 distribution and level in mouse clones:: consequences for pluripotency [J].
Boiani, M ;
Eckardt, S ;
Schöler, HR ;
McLaughlin, KJ .
GENES & DEVELOPMENT, 2002, 16 (10) :1209-1219
[9]   Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei [J].
Bortvin, A ;
Eggan, K ;
Skaletsky, H ;
Akutsu, H ;
Berry, DL ;
Yanagimachi, R ;
Page, DC ;
Jaenisch, R .
DEVELOPMENT, 2003, 130 (08) :1673-1680
[10]   Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos [J].
Bourc'his, D ;
Le Bourhis, D ;
Patin, D ;
Niveleau, A ;
Comizzoli, P ;
Renard, JP ;
Viegas-Péquignot, E .
CURRENT BIOLOGY, 2001, 11 (19) :1542-1546