Isobaric-Isothermal Molecular Dynamics Simulations Utilizing Density Functional Theory: An Assessment of the Structure and Density of Water at Near-Ambient Conditions

被引:325
作者
Schmidt, Jochen [1 ]
VandeVondele, Joost [2 ]
Kuo, I. -F. William [3 ]
Sebastiani, Daniel [1 ]
Siepmann, J. Ilja [4 ,5 ,6 ]
Hutter, Juerg [2 ]
Mundy, Christopher J. [7 ]
机构
[1] Max Planck Inst Polymer Res, D-55021 Mainz, Germany
[2] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland
[3] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA
[4] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA
[5] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[6] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[7] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA
基金
美国国家科学基金会;
关键词
RADIAL-DISTRIBUTION FUNCTIONS; BIAS MONTE-CARLO; LIQUID WATER; 1ST PRINCIPLES; CRYSTAL-STRUCTURE; PHASE-EQUILIBRIA; PRESSURE; APPROXIMATION; POTENTIALS;
D O I
10.1021/jp901990u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present herein a comprehensive density functional theory study toward assessing the accuracy of two popular gradient-corrected exchange correlation functionals on the structure and density of liquid water at near ambient conditions in the isobaric-isothermal ensemble. Our results indicate that both PBE and BLYP functionals under predict the density and over structure the liquid. Adding the dispersion correction due to Grimme(1.2) improves the predicted densities for both BLYP and PBE in a significant manner. Moreover, the addition of the dispersion correction for BLYP yields an oxygen-oxygen radial distribution function in excellent agreement with experiment. Thus, we conclude that one can obtain a very satisfactory model for water using BLYP and a correction for dispersion.
引用
收藏
页码:11959 / 11964
页数:6
相关论文
共 53 条
[1]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[2]   Evaluation of exchange-correlation energy, potential, and stress -: art. no. 165110 [J].
Balbás, LC ;
Martins, JL ;
Soler, JM .
PHYSICAL REVIEW B, 2001, 64 (16)
[3]   PERTURBATION THEORY AND EQUATION OF STATE FOR FLUIDS - SQUARE-WELL POTENTIAL [J].
BARKER, JA ;
HENDERSON, D .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (08) :2856-+
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Development of polarizable water force fields for phase equilibrium calculations [J].
Chen, B ;
Xing, JH ;
Siepmann, JI .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (10) :2391-2401
[6]  
Corso A. D., 1994, PHYS REV B, V50, P4327
[7]   First-principles modelling of Earth and planetary materials at high pressures and temperatures [J].
Gillan, M. J. ;
Alfe, D. ;
Brodholt, J. ;
Vocadlo, L. ;
Price, G. D. .
REPORTS ON PROGRESS IN PHYSICS, 2006, 69 (08) :2365-2441
[8]   Separable dual-space Gaussian pseudopotentials [J].
Goedecker, S ;
Teter, M ;
Hutter, J .
PHYSICAL REVIEW B, 1996, 54 (03) :1703-1710
[9]   Ab initio simulation of the equation of state and kinetics of shocked water [J].
Goldman, Nir ;
Reed, Evan J. ;
Kuo, I. -F. William ;
Fried, Laurence E. ;
Mundy, Christopher J. ;
Curioni, Alessandro .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (12)
[10]   Accurate description of van der Waals complexes by density functional theory including empirical corrections [J].
Grimme, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (12) :1463-1473