Predicting criminal recidivism: A comparison of neural network models with statistical methods

被引:23
作者
Caulkins, J
Cohen, J
Gorr, W
Wei, JF
机构
[1] H. John Heinz III Sch. of Pub. Plcy., Carnegie Mellon University, Pittsburgh
关键词
D O I
10.1016/0047-2352(96)00012-8
中图分类号
DF [法律]; D9 [法律];
学科分类号
0301 ;
摘要
This article applies neural network and conventional statistical models to predicting criminal recidivism. While having promising properties for predicting recidivism, the network models do not exhibit any advantage over the other methods in an application on a well-known data set, Analysis suggests that currently available prediction variables have limited information content for discriminating recidivists, regardless of the models or methods used.
引用
收藏
页码:227 / 240
页数:14
相关论文
共 54 条
[1]  
ANDERSON A, 1989, SYNERGETICS COGNITIO
[2]  
[Anonymous], 1986, CRIMINAL CAREERS CAR
[3]   Use of an Artificial Neural Network for Data Analysis in Clinical Decision-Making: The Diagnosis of Acute Coronary Occlusion [J].
Bat, William G. .
NEURAL COMPUTATION, 1990, 2 (04) :480-489
[4]  
BELL TB, 1990, 1990 DEL TOUCH AUD S
[5]  
Blumstein Alfred., 1986, Criminal Careers and Career Criminals, V2
[6]  
Burgess E.W., 1928, WORKING INDETERMINAT
[7]  
CASETTI E, 1983, URBAN GEOGR, V4, P285
[8]  
Cohen J., 1990, IMPROVED TECHNIQUES
[9]   RELATIVE IMPROVEMENT OVER CHANCE (RIOC) FOR 2X2 TABLES [J].
COPAS, JB ;
LOEBER, R .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1990, 43 :293-307
[10]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274