Control of chaos in conservative flows

被引:14
作者
Lin, ZH
Chen, SG
机构
[1] CHINA ACAD ENGN PHYS, GRAD SCH, BEIJING 100088, PEOPLES R CHINA
[2] GUANGXI UNIV, DEPT PHYS, NANNING 530004, PEOPLES R CHINA
[3] INST APPL PHYS & COMPUTAT MATH, BEIJING 100088, PEOPLES R CHINA
关键词
D O I
10.1103/PhysRevE.56.168
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The present paper discusses the control of chaos in conservative flow. Two methods are introduced, depending on whether the perturbations to the state are variables introduced on a proportional or an additive fashion. The maximum Lyapunov exponents of new creating periods are given. The method is robust against external noise.
引用
收藏
页码:168 / 171
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES C
[2]   TAMING CHAOTIC DYNAMICS WITH WEAK PERIODIC PERTURBATIONS [J].
BRAIMAN, Y ;
GOLDHIRSCH, I .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2545-2548
[3]   Suppression of chaos through changes in the system variables through Poincare and Lorenz return maps [J].
Gutierrez, JM ;
Iglesias, A ;
Guemez, J ;
Matias, MA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (07) :1351-1362
[4]   STABILIZING HIGH-PERIOD ORBITS IN A CHAOTIC SYSTEM - THE DIODE RESONATOR [J].
HUNT, ER .
PHYSICAL REVIEW LETTERS, 1991, 67 (15) :1953-1955
[5]  
JACKSON EA, 1990, PHYS LETT A, V151, P478, DOI 10.1016/0375-9601(90)90465-Z
[6]  
JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
[7]   CONTROLLING HAMILTONIAN CHAOS [J].
LAI, YC ;
DING, MZ ;
GREBOGI, C .
PHYSICAL REVIEW E, 1993, 47 (01) :86-92
[8]   CONTROL OF LORENZ CHAOS [J].
LIU, YD ;
LEITE, JRR .
PHYSICS LETTERS A, 1994, 185 (01) :35-37
[9]  
Liu ZH, 1997, CHINESE PHYS LETT, V14, P85, DOI 10.1088/0256-307X/14/2/002
[10]   Directing nonlinear dynamic systems to any desired orbit [J].
Liu, ZH ;
Chen, SG .
PHYSICAL REVIEW E, 1997, 55 (01) :199-204