Leucine, glutamine, and tyrosine reciprocally modulate the translation initiation factors eIF4F and eIF2B in perfused rat liver

被引:25
作者
Shah, OJ [1 ]
Antonetti, DA [1 ]
Kimball, SR [1 ]
Jefferson, LS [1 ]
机构
[1] Penn State Univ Hosp, Coll Med, Dept Cellular & Mol Physiol, Hershey, PA 17033 USA
关键词
D O I
10.1074/jbc.274.51.36168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leucine, glutamine, and tyrosine, three amino acids playing key modulatory roles in hepatic proteolysis, were evaluated for activation of signaling pathways involved in regulation of liver protein synthesis. Furthermore, because leucine signals to effecters that lie distal to the mammalian target of rapamycin, these downstream factors were selected for study as candidate mediators of amino acid signaling. Using the perfused rat liver as a model system, we observed a 25% stimulation of protein synthesis in response to balanced hyperaminoacidemia, whereas amino acid imbalance due to elevated concentrations of leucine, glutamine, and tyrosine resulted in a protein synthetic depression of roughly 50% compared with normoaminoacidemic controls. The reduction in protein synthesis accompanying amino acid imbalance became manifest at high physiologic concentrations and was dictated by the guanine nucleotide exchange activity of translation initiation factor eIF2B. Paradoxically, this phenomenon occurred concomitantly with assembly of the mRNA cap recognition complex, eIF4F as well as activation of the 70-kDa ribosomal S6 kinase, p70(S6k). Dual and reciprocal modulation of eIF4F and eIF2B was leucine-specific because isoleucine, a structural analog, was ineffective in these regards. Thus, we conclude that amino acid imbalance, heralded by leucine, initiates a liver-specific translational failsafe mechanism that deters protein synthesis under unfavorable circumstances despite promotion of the eIF4F complex.
引用
收藏
页码:36168 / 36175
页数:8
相关论文
共 56 条
  • [1] PHOSPHORYLATION OF RABBIT RETICULOCYTE GUANINE-NUCLEOTIDE EXCHANGE FACTOR IN-VIVO - IDENTIFICATION OF PUTATIVE CASEIN KINASE-II PHOSPHORYLATION SITES
    AROOR, AR
    DENSLOW, ND
    SINGH, LP
    OBRIEN, TW
    WAHBA, AJ
    [J]. BIOCHEMISTRY, 1994, 33 (11) : 3350 - 3357
  • [2] Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation
    Beretta, L
    Gingras, AC
    Svitkin, YV
    Hall, MN
    Sonenberg, N
    [J]. EMBO JOURNAL, 1996, 15 (03) : 658 - 664
  • [3] PHOSPHORYLATION OF RIBOSOMAL-PROTEIN S6 IS INHIBITORY FOR AUTOPHAGY IN ISOLATED RAT HEPATOCYTES
    BLOMMAART, EFC
    LUIKEN, JJFP
    BLOMMAART, PJE
    VANWOERKOM, GM
    MEIJER, AJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (05) : 2320 - 2326
  • [4] CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO
    BROWN, EJ
    BEAL, PA
    KEITH, CT
    CHEN, J
    SHIN, TB
    SCHREIBER, SL
    [J]. NATURE, 1995, 377 (6548) : 441 - 446
  • [5] Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin
    Brunn, GJ
    Hudson, CC
    Sekulic, A
    Williams, JM
    Hosoi, H
    Houghton, PJ
    Lawrence, JC
    Abraham, RT
    [J]. SCIENCE, 1997, 277 (5322) : 99 - 101
  • [6] Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002
    Brunn, GJ
    Williams, J
    Sabers, C
    Wiederrecht, G
    Lawrence, JC
    Abraham, RT
    [J]. EMBO JOURNAL, 1996, 15 (19) : 5256 - 5267
  • [7] PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION
    BURGERING, BMT
    COFFER, PJ
    [J]. NATURE, 1995, 376 (6541) : 599 - 602
  • [8] RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1
    Burnett, PE
    Barrow, RK
    Cohen, NA
    Snyder, SH
    Sabatini, DM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) : 1432 - 1437
  • [9] POSSIBLE REGULATOR OF PROTEIN TURNOVER IN MUSCLE
    BUSE, MG
    REID, SS
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1975, 56 (05) : 1250 - 1261
  • [10] EFFECT OF EXPERIMENTAL DIABETES ON THE LEVELS OF AROMATIC AND BRANCHED-CHAIN AMINO-ACIDS IN RAT-BLOOD AND BRAIN
    CRANDALL, EA
    FERNSTROM, JD
    [J]. DIABETES, 1983, 32 (03) : 222 - 230