Rheological chaos in a scalar shear-thickening model

被引:62
作者
Cates, ME
Head, DA
Ajdari, A
机构
[1] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Free Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[3] Ecole Super Phys & Chim Ind Ville Paris, Lab Physicochim Theor, CNRS, UMR 7083, F-75231 Paris 05, France
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 02期
关键词
D O I
10.1103/PhysRevE.66.025202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in which the shear stress sigma is driven at a constant shear rate (gamma) over dot and relaxes by two parallel decay processes: a nonlinear decay at a nonmonotonic rate R(sigma(1)) and a linear decay at rate lambdasigma(2). Here sigma(1,2)(t)=tau(1,2)(-1)integral(0)(t)sigma(t('))exp[-(t-t('))/tau(1,2)]dt(') are two retarded stresses. For suitable parameters, the steady state flow curve is monotonic but unstable; this arises when tau(2)>tau(1) and 0>R'(sigma)>-lambda so that monotonicity is restored only through the strongly retarded term (which might model a slow evolution of the material structure under stress). Within the unstable region we find a period-doubling sequence leading to chaos. Instability, but not chaos, persists even for the case tau(1)-->0. A similar generic mechanism might also arise in shear thinning systems and in some banded flows.
引用
收藏
页码:1 / 025202
页数:4
相关论文
共 33 条
[1]   Rheological behavior of a solution of particles aggregating on the containing walls [J].
Ajdari, A .
PHYSICAL REVIEW E, 1998, 58 (05) :6294-6298
[2]   Observation of chaotic dynamics in dilute sheared aqueous solutions of CTAT [J].
Bandyopadhyay, R ;
Basappa, G ;
Sood, AK .
PHYSICAL REVIEW LETTERS, 2000, 84 (09) :2022-2025
[3]   Chaotic dynamics in shear-thickening surfactant solutions [J].
Bandyopadhyay, R ;
Sood, AK .
EUROPHYSICS LETTERS, 2001, 56 (03) :447-453
[4]   Reversible shear thickening in monodisperse and bidisperse colloidal dispersions [J].
Bender, J ;
Wagner, NJ .
JOURNAL OF RHEOLOGY, 1996, 40 (05) :899-916
[5]   Inhomogeneous shear rows of wormlike micelles: A master dynamic phase diagram [J].
Berret, JF ;
Porte, G ;
Decruppe, JP .
PHYSICAL REVIEW E, 1997, 55 (02) :1668-1676
[6]   ISOTROPIC-TO-NEMATIC TRANSITION IN WORMLIKE MICELLES UNDER SHEAR [J].
BERRET, JF ;
ROUX, DC ;
PORTE, G .
JOURNAL DE PHYSIQUE II, 1994, 4 (08) :1261-1279
[7]   Shear banding instability in wormlike micellar solutions [J].
Britton, MM ;
Callaghan, PT .
EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (02) :237-249
[8]   Transition to shear banding in pipe and Couette flow of wormlike micellar solutions [J].
Britton, MM ;
Mair, RW ;
Lambert, RK ;
Callaghan, PT .
JOURNAL OF RHEOLOGY, 1999, 43 (04) :897-909
[9]  
CHAIKIN P, 2000, SOFT FRAGILE MATTER
[10]   Rheology and aging: A simple approach [J].
Derec, C ;
Ajdari, A ;
Lequeux, F .
EUROPEAN PHYSICAL JOURNAL E, 2001, 4 (03) :355-361