A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods

被引:185
作者
Tartakovsky, Alexander G. [1 ]
Rozovskii, Boris L.
Blazek, Rudolf B.
Kim, Hongjoong
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Appl Math Sci, Los Angeles, CA 90089 USA
[3] Adv Sci & Novel Technol, Rancho Palos Verdes, CA 92075 USA
[4] Korea Univ, Dept Math, Seoul 136701, South Korea
关键词
attack detection; change point detection; denial of service; intrusion detection; man-in-the-middle; network security; network traffic; nonparametric detection; port scanning; sequential tests; service survivability; worm;
D O I
10.1109/TSP.2006.879308
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Large-scale computer network attacks in their final stages can readily be identified by observing very abrupt changes in the network traffic. In the early stage of an attack, however, these changes are hard to detect and difficult to distinguish from usual traffic fluctuations. Rapid response, a minimal false-alarm rate, and the capability to detect a wide spectrum of attacks are the crucial features of intrusion detection systems. In this paper, we develop efficient adaptive sequential and batch-sequential methods for an early detection of attacks that lead to changes in network traffic, such as denial-of-service attacks, worm-based attacks, port-scanning, and man-in-the-middle attacks. These methods employ a statistical analysis of data from multiple layers of the network protocol to detect very subtle traffic changes. The algorithms are based on change-point detection theory and utilize a thresholding of test statistics to achieve a fixed rate of false alarms while allowing us to detect changes in statistical models as soon as possible. There are three attractive features of the proposed approach. First, the developed algorithms are self-learning, which enables them to adapt to various network loads and usage patterns. Secondly, they allow for the detection of attacks with a small average delay for a given false-alarm rate. Thirdly, they are computationally simple and thus can be implemented online. Theoretical frameworks for detection procedures are presented. We also give the results of the experimental study with the use of a network simulator testbed as well as real-life testing for TCP SYN flooding attacks.
引用
收藏
页码:3372 / 3382
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 1996, PHRACK MAG, V7
[2]  
[Anonymous], 1999, Mathematical Methods of Statistics
[3]  
[Anonymous], 1991, Sequential Methods in the Theory of Information Systems
[4]  
Basseville M., 1993, DETECTION ABRUPT CHA
[5]   A NONPARAMETRIC CONTROL CHART FOR DETECTING SMALL DISORDERS [J].
BHATTACHARYA, PK ;
FRIERSON, D .
ANNALS OF STATISTICS, 1981, 9 (03) :544-554
[6]  
BLAZEK R, 2003, INTERFACE 2003
[7]  
BLAZEK RB, 2001, P 2 ANN IEEE SYST MA
[8]  
Brodsky BE., 1993, Nonparametric Methods in Change Point Problems
[9]  
Dragalin V, 1996, P 4 WUERZB UM C STAT, P87
[10]  
FEATHER F, 1993, ACM SIGCOMM, V23