Correlating MALDI and SIMS imaging mass spectrometric datasets of biological tissue surfaces

被引:58
作者
Eijkel, G. B.
Kaletas, B. Kuekrer
van der Wiel, I. M.
Kros, J. M. [2 ]
Luider, T. M. [3 ]
Heeren, R. M. A. [1 ]
机构
[1] AMOLF, Inst Atom & Mol Phys, FOM, NL-1098 XG Amsterdam, Netherlands
[2] Erasmus MC, Dept Pathol, Rotterdam, Netherlands
[3] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
关键词
imaging mass spectrometry; MALDI imaging; SIMS imaging; PCA; CCA; baseline correction; peak picking; SAMPLE PREPARATION; IONIZATION;
D O I
10.1002/sia.3088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Imaging mass spectrometry (IMS) is a rapidly evolving tool for combined chemical and spatial analysis of biological tissues. The complexity of the biological data requires various analytical methods to process the raw datasets. In this article, we report on the 'semi-automated' correlation of two imaging MS datasets obtained with secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization (MALDI) on the same, single brain tissue sample. Prior to statistical analysis, the raw datasets are preprocessed with novel algorithms for baseline correction and peak picking. Principal component analysis (PCA) and canonical correlation analysis (CCA) are used in concert to extract the maximum amount of information about the location of different biochemical molecules on the tissue surface. More importantly, the results show that combining the information from MALDI and SIMS, by using CCA, enables us to correlate and improve the individual results of these two imaging MS experiments. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:675 / 685
页数:11
相关论文
共 28 条
[1]   High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections [J].
Altelaar, A. F. Maarten ;
Taban, Ioana M. ;
McDonnell, Liam A. ;
Verhaert, Peter D. E. M. ;
de Lange, Robert P. J. ;
Adan, Roger A. H. ;
Mooi, Wolter J. ;
Heeren, Ron M. A. ;
Piersma, Sander R. .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2007, 260 (2-3) :203-211
[2]  
[Anonymous], 2000, Construct explication through factor or component analysis: a review and evaluation of alternative procedures for determining the number of factors or components
[3]   Hardware acceleration of processing of mass spectrometric data for proteomics [J].
Bogdan, Istvan ;
Coca, Daniel ;
Rivers, Jenny ;
Beynon, Robert J. .
BIOINFORMATICS, 2007, 23 (06) :724-731
[4]   Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources [J].
Brunelle, A ;
Touboul, D ;
Laprévote, O .
JOURNAL OF MASS SPECTROMETRY, 2005, 40 (08) :985-999
[5]   Trends in sample preparation for classical and second generation proteomics [J].
Canas, Benito ;
Pineiro, Carmen ;
Calvo, Enrique ;
Lopez-Ferrer, Daniel ;
Manuel Gallardo, Jose .
JOURNAL OF CHROMATOGRAPHY A, 2007, 1153 (1-2) :235-258
[6]   SCREE TEST FOR NUMBER OF FACTORS [J].
CATTELL, RB .
MULTIVARIATE BEHAVIORAL RESEARCH, 1966, 1 (02) :245-276
[7]  
Chou YL:., 1975, STAT ANAL BUSINESS E
[8]   Canonical correlation analysis: An overview with application to learning methods [J].
Hardoon, DR ;
Szedmak, S ;
Shawe-Taylor, J .
NEURAL COMPUTATION, 2004, 16 (12) :2639-2664
[9]  
Hotelling H, 1936, BIOMETRIKA, V28, P321, DOI 10.2307/2333955
[10]  
Jolliffe I. T, 2002, PRINCIPAL COMPONENT