Spin-dependent electronic structure of transition-metal atomic chains adsorbed on single-wall carbon nanotubes

被引:50
作者
Durgun, E. [1 ]
Ciraci, S. [1 ]
机构
[1] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey
关键词
D O I
10.1103/PhysRevB.74.125404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a systematic study of the electronic and magnetic properties of transition-metal (TM) atomic chains adsorbed on the zigzag single-wall carbon nanotubes (SWNTs). We considered the adsorption on the external and internal wall of SWNT and examined the effect of the TM coverage and geometry on the binding energy and the spin polarization at the Fermi level. All those adsorbed chains studied have ferromagnetic ground state, but only their specific types and geometries demonstrated high spin polarization near the Fermi level. Their magnetic moment and binding energy in the ground state display interesting variation with the number of d electrons of the TM atom. We also show that specific chains of transition-metal atoms adsorbed on a SWNT can lead to semiconducting properties for the minority spin bands, but semimetallic for the majority spin bands. Spin polarization is maintained even when the underlying SWNT is subjected to high radial strain. Spin-dependent electronic structure becomes discretized when TM atoms are adsorbed on finite segments of SWNTs. Once coupled with nonmagnetic metal electrodes, these magnetic needles or nanomagnets can perform as spin-dependent resonant tunneling devices. The electronic and magnetic properties of these nanomagnets can be engineered depending on the type and decoration of adsorbed TM atom as well as the size and symmetry of the tube. Our study is performed by using first-principles pseudopotential plane wave method within spin-polarized density functional method.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Contrasting bonding behaviors of 3d transition metal atoms with graphite and C60 [J].
Andriotis, AN ;
Menon, M ;
Froudakis, GE .
PHYSICAL REVIEW B, 2000, 62 (15) :9867-9871
[2]   Functionalized carbon nanotubes and device applications [J].
Ciraci, S ;
Dag, S ;
Yildirim, T ;
Gülseren, O ;
Senger, RT .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (29) :R901-R960
[3]   Indirect exchange coupling between magnetic adatoms in carbon nanotubes [J].
Costa, AT ;
Kirwan, DF ;
Ferreira, MS .
PHYSICAL REVIEW B, 2005, 72 (08)
[4]   Half-metallic properties of atomic chains of carbon-transition-metal compounds [J].
Dag, S ;
Tongay, S ;
Yildirim, T ;
Durgun, E ;
Senger, RT ;
Fong, CY ;
Ciraci, S .
PHYSICAL REVIEW B, 2005, 72 (15)
[5]   Magnetism of 3d transition-metal adatoms and dimers on graphite [J].
Duffy, DM ;
Blackman, JA .
PHYSICAL REVIEW B, 1998, 58 (11) :7443-7449
[6]   Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes [J].
Durgun, E ;
Dag, S ;
Ciraci, S ;
Gulseren, O .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (02) :575-582
[7]   Systematic study of adsorption of single atoms on a carbon nanotube -: art. no. 201401 [J].
Durgun, E ;
Dag, S ;
Bagci, VMK ;
Gülseren, O ;
Yildirim, T ;
Ciraci, S .
PHYSICAL REVIEW B, 2003, 67 (20)
[8]   An ab initio study of manganese atoms and wires interacting with carbon nanotubes [J].
Fagan, SB ;
Mota, R ;
da Silva, AJR ;
Fazzio, A .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (21) :3647-3661
[9]   Ab initio study of an iron atom interacting with single-wall carbon nanotubes -: art. no. 205414 [J].
Fagan, SB ;
Mota, R ;
da Silva, AJR ;
Fazzio, A .
PHYSICAL REVIEW B, 2003, 67 (20)
[10]   Electronic and magnetic properties of iron chains on carbon nanotubes [J].
Fagan, SB ;
Mota, R ;
da Silva, AJR ;
Fazzio, A .
MICROELECTRONICS JOURNAL, 2003, 34 (5-8) :481-484