Recent results in wavelet applications

被引:21
作者
Daubechies, I [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1117/1.482659
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present three recent developments in wavelets and subdivision: wavelet-type transforms that map integers to integers, with an application to lossless coding for images; rate-distortion bounds that realize the compression given by nonlinear approximation theorems for a model where wavelet compression outperforms the Karhunen-Loeve approach; and smoothness results for irregularly spaced subdivision schemes, related to wavelet compression for irregularly spaced data. (C) 1998 SPIE and IS&T. [S1017-9909(98)00104-4].
引用
收藏
页码:719 / 724
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1998, PHYS A
[2]  
CALDERBANK AR, UNPUB APPL COMPUT HA
[3]  
CHUI CK, 1992, WAVLET ANAL APPL, V1
[4]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[5]  
COHEN A, 1997, J APPL MATH, V57, P515
[6]  
DAUBECHIES I, INP RESS CONSTR APPR
[7]  
DAUBECHIES I, UNPUB J FOURIER ANAL
[8]  
DAUBECHIES I, 1992, CBMS C WAV SIAM, V61
[9]   IMAGE COMPRESSION THROUGH WAVELET TRANSFORM CODING [J].
DEVORE, RA ;
JAWERTH, B ;
LUCIER, BJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :719-746
[10]   COMPRESSION OF WAVELET DECOMPOSITIONS [J].
DEVORE, RA ;
JAWERTH, B ;
POPOV, V .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :737-785