Feature sensitive multiscale editing on surfaces

被引:33
作者
Clarenz, U
Griebel, M
Rumpf, M
Schweitzer, MA
Telea, A
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Univ Duisburg Gesamthsch, Fachbereich Math, D-47048 Duisburg, Germany
[3] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
surface processing; algebraic multigrid; multiscale feature detection;
D O I
10.1007/s00371-004-0245-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A novel editing method for large triangular meshes is presented. We detect surface features, such as edge and corners, by computing local zero and first surface moments, using a robust and noise resistant method. The feature detection is encoded in a finite element matrix, passed to an algebraic multigrid (AMG) algorithm. The AMG algorithm generates a matrix hierarchy ranging from fine to coarse representations of the initial fine grid matrix. This hierarchy comes along with a corresponding multiscale of basis functions, which reflect the surface features on all hierarchy levels. We consider either these basis functions or distinct sets from an induced multiscale domain decomposition as handles for surface manipulation. We present a multiscale editor which enables Boolean operations on this domain decomposition and simply algebraic operations on the basis functions. Users can interactively design their favorite surface handles by simple grouping operations on the multiscale of domains. Several applications on large meshes underline the effectiveness and flexibility of the presented tool.
引用
收藏
页码:329 / 343
页数:15
相关论文
共 36 条
  • [1] AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING
    ALVAREZ, L
    GUICHARD, F
    LIONS, PL
    MOREL, JM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) : 199 - 257
  • [2] Biermann H, 2001, COMP GRAPH, P185, DOI 10.1145/383259.383280
  • [3] BRANDT A, 1986, APPL MATH COMPUT, V19, P23, DOI 10.1016/0096-3003(86)90095-0
  • [4] Brandt A., 1982, Report
  • [5] Brandt A., 1984, SPARSITY ITS APPL
  • [6] BRANDT A, 1983, PRELIMINARY P INT MU
  • [7] Algebraic multigrid based on element interpolation (AMGE)
    Brezina, M
    Cleary, AJ
    Falgout, RD
    Henson, VE
    Jones, JE
    Manteuffel, TA
    McCormick, SF
    Ruge, JW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05) : 1570 - 1592
  • [8] A GEOMETRIC MODEL FOR ACTIVE CONTOURS IN IMAGE-PROCESSING
    CASELLES, V
    CATTE, F
    COLL, T
    DIBOS, F
    [J]. NUMERISCHE MATHEMATIK, 1993, 66 (01) : 1 - 31
  • [9] CHARTIER TP, 2002, 7 COPP MOUNT C IT ME, V2
  • [10] Strategies for polyhedral surface decomposition: An experimental study
    Chazelle, B
    Dobkin, DP
    Shouraboura, N
    Tal, A
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 7 (5-6): : 327 - 342