Drug-induced apoptotic neurodegeneration in the developing brain

被引:215
作者
Olney, JW
Wozniak, DF
Jevtovic-Todorovic, V
Farber, NB
Bittigau, P
Ikonomidou, C
机构
[1] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[2] Univ Virginia, Dept Anesthesiol, Charlottesville, VA USA
[3] Humboldt Univ, Charite, Virchow Clin, Dept Pediat, Berlin, Germany
关键词
D O I
10.1111/j.1750-3639.2002.tb00467.x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Physiological cell death (PCD), a process by which redundant or unsuccessful neurons are deleted by apoptosis (cell suicide) from the developing central nervous system, has been recognized as a natural phenomenon for many years. Whether environmental factors can interact with PCD mechanisms to increase the number of neurons undergoing PCD, thereby converting this natural phenomenon into a pathological process, is an interesting question for which new answers are just now becoming available. In a series of recent studies we have shown that 2 major classes of drugs (those that block NMDA glutamate receptors and those that promote GABAA receptor activation), when administered to immature rodents during the period of synaptogenesis, trigger widespread apoptotic neurodegeneration throughout the developing brain. In addition, we have found that ethanol, which has both NMDA antagonist and GABAmimetic properties, triggers a robust pattern of apoptotic neurodegeneration, thereby deleting large numbers of neurons from many different regions of the developing brain. These findings provide a more likely explanation than has heretofore been available for the reduced brain mass and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome (FAS). The period of synaptogenesis, also known as the brain growth spurt period, occurs in different species at different times relative to birth. In rats and mice it is a postnatal event, but in humans it extends from the sixth month of gestation to several years after birth. Thus, there is a period in pre- and postnatal human development, lasting for several years, during which immature CNS neurons are prone to commit suicide if exposed to intoxicating concentrations of drugs with NMDA antagonist or GABAmimetic properties. These findings are important, not only because of their relevance to the FAS, but because there are many agents in the human environment, other than ethanol, that have NMDA antagonist or GABAmimetic properties. Such agents include drugs that may be abused by pregnant mothers (ethanol, phencyclidine [angel dust], ketamine [Special K], nitrous oxide [laughing gas], barbiturates, benzodiazepines), and many medicinals used in obstetric and pediatric neurology (anticonvulsants), and anesthesiology (all general anesthetics are either NMDA antagonists or GABAmimetics).
引用
收藏
页码:488 / 498
页数:11
相关论文
共 64 条
[1]   THALAMIC ABNORMALITIES IN SCHIZOPHRENIA VISUALIZED THROUGH MAGNETIC-RESONANCE IMAGE AVERAGING [J].
ANDREASEN, NC ;
ARNDT, S ;
SWAYZE, V ;
CIZADLO, T ;
FLAUM, M ;
OLEARY, D ;
EHRHARDT, JC ;
YUH, WTC .
SCIENCE, 1994, 266 (5183) :294-298
[2]   Identifying maternal self-reported alcohol use associated with Fetal Alcohol Spectrum Disorders [J].
Barr, HM ;
Streissguth, AP .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2001, 25 (02) :283-287
[3]   EFFECT OF ETHANOL CHRONICALLY ADMINISTERED TO PREWEANLING RATS ON CEREBELLAR DEVELOPMENT - MORPHOLOGICAL-STUDY [J].
BAUERMOFFETT, C ;
ALTMAN, J .
BRAIN RESEARCH, 1977, 119 (02) :249-268
[4]  
BENES FM, 1991, ARCH GEN PSYCHIAT, V48, P996
[5]   The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects [J].
Benes, FM ;
Vincent, SL ;
Todtenkopf, M .
BIOLOGICAL PSYCHIATRY, 2001, 50 (06) :395-406
[6]  
Bittigau D, 1999, ANN NEUROL, V45, P724, DOI 10.1002/1531-8249(199906)45:6<724::AID-ANA6>3.0.CO
[7]  
2-P
[8]  
Bittigau P, 1998, RESTOR NEUROL NEUROS, V13, P11
[9]   ALCOHOL-INDUCED NEURONAL LOSS IN DEVELOPING RATS - INCREASED BRAIN-DAMAGE WITH BINGE EXPOSURE [J].
BONTHIUS, DJ ;
WEST, JR .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 1990, 14 (01) :107-118
[10]   A cautionary note on the use of the TUNEL stain to determine apoptosis [J].
CharriautMarlangue, C ;
BenAri, Y .
NEUROREPORT, 1995, 7 (01) :61-64