A neural network method for mixture estimation for vegetation mapping

被引:112
作者
Carpenter, GA
Gopal, S
Macomber, S
Martens, S
Woodcock, CE
机构
[1] Boston Univ, Dept Cognit & Neural Syst, Boston, MA 02215 USA
[2] Boston Univ, Ctr Adapt Syst, Boston, MA 02215 USA
[3] Boston Univ, Ctr Remote Sensing, Boston, MA 02215 USA
[4] Boston Univ, Dept Geog, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0034-4257(99)00027-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
While most forest maps identify only the dominant vegetation class in delineated stands, individual stands are often better characterized by a mix of vegetation types. Many land management applications, including wildlife habitat studies, can benefit from knowledge of mixes. This article examines various algorithms that use data from the Landsat Thematic Mapper (TM) satellite to estimate mixtures of vegetation types within forest stands. Included in the study are maximum likelihood classification and linear mixture models as well as a new methodology based on the ARTMAP neural network. Two paradigms are considered: classification methods, which describe stand-level vegetation mixtures as mosaics of pixels, each identified with its primary vegetation class; and mixture methods, which treat samples as blends of vegetation, even at the pixel level. Comparative analysis of these mixture estimation methods, tested on data from the Plumas National Forest, yields the following conclusions: 1) Accurate estimates of proportions of hardwood and conifer cover within stands can be obtained, particularly when brush is not present in the understory; 2) ARTMAP outperforms statistical methods and linear mixture models in both the classification and the mixture paradigms; 3) topographic correction fails to improve mapping accuracy; and 4) the new ARTMAP mixture system produces the most accurate overall results. The Plumas data set has been made available to other researchers for further development of new mapping methods and comparison with the quantitative studies presented here, which establish initial benchmark standards. (C)Elsevier Science Inc., 1999.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 37 条
[1]  
Adams J.B., 1993, REMOTE GEOCHEMICAL A, V7, P145
[2]  
ADAMS JB, 1986, J GEOPHYS RES-SOLID, V91, P8098, DOI 10.1029/JB091iB08p08098
[3]   CLASSIFICATION OF MULTISPECTRAL IMAGES BASED ON FRACTIONS OF ENDMEMBERS - APPLICATION TO LAND-COVER CHANGE IN THE BRAZILIAN AMAZON [J].
ADAMS, JB ;
SABOL, DE ;
KAPOS, V ;
ALMEIDA, R ;
ROBERTS, DA ;
SMITH, MO ;
GILLESPIE, AR .
REMOTE SENSING OF ENVIRONMENT, 1995, 52 (02) :137-154
[4]   Distributed learning, recognition, and prediction by ART and ARTMAP neural networks [J].
Carpenter, GA .
NEURAL NETWORKS, 1997, 10 (08) :1473-1494
[5]   ART neural networks for remote sensing: Vegetation classification from Landsat TM and terrain data [J].
Carpenter, GA ;
Gjaja, MN ;
Gopal, S ;
Woodcock, CE .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (02) :308-325
[6]   FUZZY ARTMAP - A NEURAL NETWORK ARCHITECTURE FOR INCREMENTAL SUPERVISED LEARNING OF ANALOG MULTIDIMENSIONAL MAPS [J].
CARPENTER, GA ;
GROSSBERG, S ;
MARKUZON, N ;
REYNOLDS, JH ;
ROSEN, DB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :698-713
[7]   ARTMAP - SUPERVISED REAL-TIME LEARNING AND CLASSIFICATION OF NONSTATIONARY DATA BY A SELF-ORGANIZING NEURAL NETWORK [J].
CARPENTER, GA ;
GROSSBERG, S ;
REYNOLDS, JH .
NEURAL NETWORKS, 1991, 4 (05) :565-588
[8]  
CIVCO DL, 1989, PHOTOGRAMM ENG REM S, V55, P1303
[9]   THE EVALUATION OF FUZZY MEMBERSHIP OF LAND COVER CLASSES IN THE SUBURBAN ZONE [J].
FISHER, PF ;
PATHIRANA, S .
REMOTE SENSING OF ENVIRONMENT, 1990, 34 (02) :121-132
[10]   Non-linear mixture modelling without end-members using an artificial neural network [J].
Foody, GM ;
Lucas, RM ;
Curran, PJ ;
Honzak, M .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (04) :937-953