Minimal barriers for geometric evolutions

被引:24
作者
Bellettini, G [1 ]
Novaga, M [1 ]
机构
[1] SCUOLA NORMALE SUPER PISA,I-56100 PISA,ITALY
关键词
D O I
10.1006/jdeq.1997.3288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some properties of De Giorgi's minimal barriers and local minimal barriers for geometric flows of subsets of R-n. Concerning evolutions of the form partial derivative u/partial derivative t + F(del u, del(2)u) = 0, we prove a representation result for the minimal barrier M(E, F-F) when F is not degenerate elliptic; namely, we show that M(E, F-F) = M(E, FF+), where F+ is the smallest degenerate elliptic function above F. We also characterize the disjoint sets property and the joint sets property in terms of the Function F. (C) 1997 Academic Press.
引用
收藏
页码:76 / 103
页数:28
相关论文
共 17 条
  • [1] Ambrosio L, 1996, J DIFFER GEOM, V43, P693
  • [2] FRONT PROPAGATION AND PHASE FIELD-THEORY
    BARLES, G
    SONER, HM
    SOUGANIDIS, PE
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) : 439 - 469
  • [3] Bellettini G., 1994, ATTI ACCAD NAZ SFMNR, V5, P229
  • [4] BELLETTINI G, IN PRESS ATTI A SFMN
  • [5] Bellettini G., 1995, REND ACCAD NAZ SCI 4, V19, P43
  • [6] BELLETTINI G, 1996, 2252998 U PIS
  • [7] CHEN YG, 1991, J DIFFER GEOM, V33, P749
  • [8] De Giorgi E., 1994, C DEP MATH PAV MARCH
  • [9] DEGIORGI E, 1992, MOTION MEAN CURVATUR, P63
  • [10] DEGIORGI E, 1993, UNPUB CONGETTURE RIG