Recurrent neural network training by nprKF joint estimation

被引:3
作者
Feldkamp, LA [1 ]
Feldkamp, TM [1 ]
Prokhorov, DV [1 ]
机构
[1] Ford Motor Co, Ford Res Lab, Dearborn, MI 48121 USA
来源
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3 | 2002年
关键词
D O I
10.1109/IJCNN.2002.1007463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for training recurrent networks with the joint estimation of states and parameters, using the "derivative-free" formulation for nonlinear Kalman filters by Norgaard, Poulsen, and Ravn (NPR) [1]. Our approach is consistent with that described by Williams [2] for the extended Kalman filter (EKF). We have extended the treatment to handle multistream training and propose ways of making the required computation more efficient.
引用
收藏
页码:2086 / 2091
页数:2
相关论文
共 8 条
[1]   A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification [J].
Feldkamp, LA ;
Puskorius, GV .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2259-2277
[2]  
Feldkamp LA, 2001, IEEE IJCNN, P109, DOI 10.1109/IJCNN.2001.939001
[3]  
MATTHEWS MB, 1990, P INT NEUR NETW C PA, V1, P115
[4]  
NORGAARD M, 2000, IMMREP199815 TU DENM
[5]  
Wan EA, 2001, ADAPT LEARN SYST SIG, P221
[6]  
Wan EA, 2001, ADAPT LEARN SYST SIG, P123
[7]   The unscented Kalman Filter for nonlinear estimation [J].
Wan, EA ;
van der Merwe, R .
IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS, 2000, :153-158
[8]  
WILLIAMS RJ, 1992, P INT JOINT C NEUR N, V4, P241