8-oxo-deoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging

被引:62
作者
Herrero, A [1 ]
Barja, G [1 ]
机构
[1] Univ Complutense Madrid, Fac Biol, Dept Biol Anim 2, E-28040 Madrid, Spain
关键词
aging; free radicals; longevity; mitochondrial DNA; 8-hydroxy-deoxyguanosine; oxidative damage;
D O I
10.1007/BF03339803
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Previous studies found that the rate of mitochondrial oxygen radical generation is lower in long-lived birds than in short-lived mammals. In the present study, the oxidative DNA damage marker 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in heart and brain mitochondrial (mtDNA) and nuclear DNA (nDNA) was compared between mammals and birds of approximately similar body size and metabolic rates; rats (maximum life span, MLSP=4 years) vs pigeons (MLSP=35 years), and mice (MLSP=3.5 years) vs parakeets (MLSP=21 years) or canaries (MLSP=24 years). Lower steady-state 8-oxodG values were observed in all cases in the heart mtDNA in birds than in mammals. 8-oxodG levels were also lower in brain mtDNA in pigeons than in rats, in brain nDNA in canaries than in mice, and in heart nDNA in parakeets compared with mice. The rest of the comparisons did not show significant differences between species. These results taken together indicate that oxidative damage to DNA tends to be lower in birds (highly long-lived species) than in short-lived mammals, specially in the case of mtDNA. This is consistent with the low rate of mitochondrial oxygen rad icai generation observed in all long-lived species investigated up to date birds or mammals, including the bird species studied here. The results also show that 8-oxodG steady-state levels are much higher in mtDNA than in nDNA in all the tissues (heart and brain) and species (birds and mammals) studied. (Aging Clin. Exp. Res. 11: 294-300, 1999) (C)1999, Editrice Kurtis.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 33 条
[1]   OXIDATIVE DAMAGE TO DNA - RELATION TO SPECIES METABOLIC-RATE AND LIFE-SPAN [J].
ADELMAN, R ;
SAUL, RL ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (08) :2706-2708
[2]  
ALTMAN P, 1972, BIOL DATA BOOK, P229
[3]   ENDOGENOUS OXIDATIVE DNA DAMAGE, AGING, AND CANCER [J].
AMES, BN .
FREE RADICAL RESEARCH COMMUNICATIONS, 1989, 7 (3-6) :121-128
[4]   Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA [J].
Anson, RM ;
Croteau, DL ;
Stierum, RH ;
Filburn, C ;
Parsell, R ;
Bohr, VA .
NUCLEIC ACIDS RESEARCH, 1998, 26 (02) :662-668
[5]  
ASUNCION JG, 1996, FASEB J, V10, P333
[6]   Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon [J].
Barja, G ;
Herrero, A .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1998, 30 (03) :235-243
[7]   Mitochondrial free radical production and aging in mammals and birds [J].
Barja, G .
TOWARDS PROLONGATION OF THE HEALTHY LIFE SPAN: PRACTICAL APPROACHES TO INTERVENTION, 1998, 854 :224-238
[8]   Mitochondrial oxygen radical generation and leak: Sites of production in state 4 and 3, organ specificity, and relation to aging and longevity [J].
Barja, G .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1999, 31 (04) :347-366
[9]   The free radical theory of aging matures [J].
Beckman, KB ;
Ames, BN .
PHYSIOLOGICAL REVIEWS, 1998, 78 (02) :547-581
[10]   Role of mitochondrial DNA mutations in human aging: Implications for the central nervous system and muscle [J].
Brierley, EJ ;
Johnson, MA ;
Lightowlers, RN ;
James, OFW ;
Turnbull, DM .
ANNALS OF NEUROLOGY, 1998, 43 (02) :217-223