Structure and dynamics of a proton wire: A theoretical study of H+ translocation along the single-file water chain in the gramicidin a channel

被引:256
作者
Pomes, R
Roux, B
机构
[1] UNIV MONTREAL,DEPT CHEM,GRP RECH TRANSPORT MEMBRANAIRE,MONTREAL,PQ H3C 3J7,CANADA
[2] UNIV MONTREAL,DEPT PHYS,GRP RECH TRANSPORT MEMBRANAIRE,MONTREAL,PQ H3C 3J7,CANADA
基金
英国医学研究理事会;
关键词
D O I
10.1016/S0006-3495(96)79211-1
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The rapid translocation of H+ along a chain of hydrogen-bonded water molecules, or proton wire, is thought to be an important mechanism for proton permeation through transmembrane channels. Computer simulations are used to study the properties of the proton wire formed by the single-file waters in the gramicidin A channel. The model includes the polypeptidic dimer, with 22 water molecules and one excess proton. The dissociation of the water molecules is taken into account by the ''polarization model'' of Stillinger and co-workers. The importance of quantum effects due to the light mass of the hydrogen nuclei is examined with the use of discretized Feynman path integral molecular dynamics simulations. Results show that the presence of an excess proton in the pore orients the single-file water molecules and affects the geometry of water-water hydrogen bonding interactions. Rather than a well-defined hydronium ion OH3+ in the single-file region, the protonated species is characterized by a strong hydrogen bond resembling that of O2H5+. The quantum dispersion of protors has a small but significant effect on the equilibrium structure of the hydrogen-bonded water chain. During classical trajectories, proton transfer between consecutive water molecules is a very fast spontaneous process that takes place in the subpicosecond time scale. The translocation along extended regions of the chain takes place neither via a totally concerted mechanism in which the donor-acceptor pattern would flip over the entire chain in a single step, nor via a succession of incoherent hops between well-defined intermediates. Rather, proton transfer in the wire is a semicollective process that results from the subtle interplay of rapid hydrogen-bond length fluctuations along the water chain. These rapid structural fluctuations of the protonated single file of waters around an average position and the slow movements of the average position of the excess proton along the channel axis occur on two very different time scales. Ultimately, it is the slow reorganization of hydrogen bonds between single-file water molecules and channel backbone carbonyl groups that, by affecting the connectivity and the dynamics of the single-file water chain, also limits the translocation of the proton across the pore.
引用
收藏
页码:19 / 39
页数:21
相关论文
共 63 条
[1]   PROTON CONDUCTANCE BY THE GRAMICIDIN WATER WIRE - MODEL FOR PROTON CONDUCTANCE IN THE F1F0 ATPASES [J].
AKESON, M ;
DEAMER, DW .
BIOPHYSICAL JOURNAL, 1991, 60 (01) :101-109
[2]  
Allen M. P., 1987, J COMPUTER SIMULATIO, DOI DOI 10.2307/2938686
[3]   H-1-NMR STUDY OF GRAMICIDIN-A TRANSMEMBRANE ION CHANNEL - HEAD-TO-HEAD RIGHT-HANDED, SINGLE-STRANDED HELICES [J].
ARSENIEV, AS ;
BARSUKOV, IL ;
BYSTROV, VF ;
LOMIZE, AL ;
OVCHINNIKOV, YA .
FEBS LETTERS, 1985, 186 (02) :168-174
[4]   A QUANTUM MOLECULAR-DYNAMICS STUDY OF PROTON-TRANSFER REACTIONS ALONG ASYMMETRICAL H-BONDS IN SOLUTION [J].
AZZOUZ, H ;
BORGIS, D .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (09) :7361-7375
[5]   APPLICATIONS OF QUANTUM-CLASSICAL AND QUANTUM STOCHASTIC MOLECULAR-DYNAMICS SIMULATIONS FOR PROTON-TRANSFER PROCESSES [J].
BALA, P ;
LESYNG, B ;
MCCAMMON, JA .
CHEMICAL PHYSICS, 1994, 180 (2-3) :271-285
[6]  
Berendsen H. J., 1981, Intermolecular Forces, DOI [10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658-1_21]
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   WATER IS REQUIRED FOR PROTON-TRANSFER FROM ASPARTATE-96 TO THE BACTERIORHODOPSIN SCHIFF-BASE [J].
CAO, Y ;
VARO, G ;
CHANG, M ;
NI, BF ;
NEEDLEMAN, R ;
LANYI, JK .
BIOCHEMISTRY, 1991, 30 (45) :10972-10979
[9]   EXPLOITING THE ISOMORPHISM BETWEEN QUANTUM-THEORY AND CLASSICAL STATISTICAL-MECHANICS OF POLYATOMIC FLUIDS [J].
CHANDLER, D ;
WOLYNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (07) :4078-4095
[10]  
CHANDLER D, 1989, HOUCH SESS, V51, P1