Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains

被引:87
作者
De Rycker, M [1 ]
Price, CM [1 ]
机构
[1] Univ Cincinnati, Coll Med, Dept Mol Genet Biochem & Microbiol, Cincinnati, OH 45267 USA
关键词
D O I
10.1128/MCB.24.22.9802-9812.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tankyrases are novel poly(ADP-ribose) polymerases that have SAM and ankyrin protein-interaction domains. They are found at telomeres, centrosomes, nuclear pores, and Golgi vesicles and have been shown to participate in telomere length regulation. Their other function(s) are unknown, and it has been difficult to envision a common role at such diverse cellular locations. We have shown that tankyrase I polymerizes through its sterile alpha motif (SAM) domain to assemble large protein complexes. In vitro polymerization is reversible and still allows interaction with ankyrin-domain binding proteins. Polymerization can also occur in vivo, with SAM-dependent association of overexpressed tankyrase leading to formation of large tankyrase-containing vesicles, disruption of Golgi structure, and inhibition of apical secretion. Finally, tankyrase polymers are dissociated efficiently by poly(ADP-ribosy)lation. This disassembly is prevented by mutation of the PARP domain. Our findings indicate that tankyrase 1 has the unique capacity to promote both assembly and disassembly of large protein complexes. Thus, tankyrases appear to be master scaffolding proteins that regulate the formation of dynamic protein networks at different cellular locations. This implies a common scaffolding function for tankyrases at each location, with specific tankyrase interaction partners conferring location-specific roles to each network e.g., telomere compaction or regulation of vesicle trafficking.
引用
收藏
页码:9802 / 9812
页数:11
相关论文
共 37 条
[1]   Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis [J].
Bae, JY ;
Donigian, JR ;
Hsueh, AJW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (07) :5195-5204
[2]   Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues [J].
Bennett, V ;
Baines, AJ .
PHYSIOLOGICAL REVIEWS, 2001, 81 (03) :1353-1392
[3]   Switching and signaling at the telomere [J].
Blackburn, EH .
CELL, 2001, 106 (06) :661-673
[4]   ProSAP/Shank proteins - a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease [J].
Boeckers, TM ;
Bockmann, J ;
Kreutz, MR ;
Gundelfinger, ED .
JOURNAL OF NEUROCHEMISTRY, 2002, 81 (05) :903-910
[5]   Regulated transport of the glucose transporter glut4 [J].
Bryant, NJ ;
Govers, R ;
James, DE .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (04) :267-277
[6]   TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres [J].
Chang, W ;
Dynek, JN ;
Smith, S .
GENES & DEVELOPMENT, 2003, 17 (11) :1328-1333
[7]   Tankyrase is a Golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles [J].
Chi, NW ;
Lodish, HF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38437-38444
[8]   Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres [J].
Cook, BD ;
Dynek, JN ;
Chang, W ;
Shostak, G ;
Smith, S .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (01) :332-342
[9]   Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions [J].
D'Amours, D ;
Desnoyers, S ;
D'Silva, I ;
Poirier, GG .
BIOCHEMICAL JOURNAL, 1999, 342 :249-268
[10]   Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2:: PARP activity negatively regulates TRF2 [J].
Dantzer, F ;
Giraud-Panis, MJ ;
Jaco, I ;
Amé, JC ;
Schultz, I ;
Blasco, M ;
Koering, CE ;
Gilson, E ;
Ménissier-de Murcia, J ;
de Murcia, G ;
Schreiber, V .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (04) :1595-1607