The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits

被引:73
作者
Hong, KJ
Ma, DQ
Beverley, SM
Turco, SJ [1 ]
机构
[1] Univ Kentucky, Med Ctr, Dept Biochem, Lexington, KY 40536 USA
[2] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA
关键词
D O I
10.1021/bi992363l
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
LPG2 (a gene involved in lipophosphoglycan assembly) encodes the Golgi GDP-Man transporter of the protozoan parasite Leishmania and is a defining member of a new family of eukaryotic nucleotide-sugar transporters (NSTs). Although NST activities are widespread, mammalian cells lack a GDP-Man NST, thereby providing an ideal heterologous system for probing the LPG2 structure and activity. LPG2 expression constructs introduced into either mammalian cells or a Leishmania lpg2(-) mutant conferred GDP-Man, GDP-Ara, and GDP-Fuc (in Leishmania only) uptake in isolated microsomes. LPG2 is the first NST to be associated with multiple substrate specificities. Uptake activity showed latency, exhibited an antiport mechanism of transport with GMP, and was susceptible to the anion transport inhibitor DIDS. The apparent K-m for GDP Man uptake was similar in transfected mammalian cells (12.2 mu M) or Leishmania (6.9 mu M). Given the evolutionary distance between protozoans and vertebrates, these data suggest that LPG2 functions autonomously to provide transporter activity. Using epitope-tagged LPG2 proteins, we showed the existence of hexameric LPG2 complexes by immunoprecipitation experiments, glycerol gradient centrifugation, pore-limited native gel electrophoresis, and cross-linking experiments. This provides strong biochemical evidence for a multimeric complex of NSTs, a finding with important implications to the structure and specificity of NSTs in both Leishmania and other organisms. Inhibition of essential GDP-Man uptake in fungal and protozoan systems offers an attractive target for potential chemotherapy.
引用
收藏
页码:2013 / 2022
页数:10
相关论文
共 44 条
[1]   A mutant yeast deficient in golgi transport of uridine diphosphate N-acetylglucosamine [J].
Abeijon, C ;
Mandon, EC ;
Robbins, PW ;
Hirschberg, CB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (15) :8851-8854
[2]   TOPOGRAPHY OF GLYCOSYLATION IN YEAST - CHARACTERIZATION OF GDPMANNOSE TRANSPORT AND LUMENAL GUANOSINE DIPHOSPHATASE ACTIVITIES IN GOLGI-LIKE VESICLES [J].
ABEIJON, C ;
ORLEAN, P ;
ROBBINS, PW ;
HIRSCHBERG, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (18) :6935-6939
[3]   Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus [J].
Abeijon, C ;
Mandon, EC ;
Hirschberg, CB .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (06) :203-207
[4]  
BERNINSONE P, 1994, J BIOL CHEM, V269, P207
[5]   Functional expression of the murine gels CMP-sialic acid transporter in Saccharomyces cerevisiae [J].
Berninsone, P ;
Eckhardt, M ;
GerardySchahn, R ;
Hirschberg, CB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (19) :12616-12619
[6]   NEW PROCEDURE FOR PREPARATION OF GDP-[U-C14]MANNOSE [J].
BRAELL, WA ;
TYO, MA ;
KRAG, SS ;
ROBBINS, PW .
ANALYTICAL BIOCHEMISTRY, 1976, 74 (02) :484-487
[7]   The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae [J].
Dean, N ;
Zhang, YB ;
Poster, JB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31908-31914
[8]   A SPECIALIZED PATHWAY AFFECTING VIRULENCE GLYCOCONJUGATES OF LEISHMANIA [J].
DESCOTEAUX, A ;
LUO, Y ;
TURCO, SJ ;
BEVERLEY, SM .
SCIENCE, 1995, 269 (5232) :1869-1872
[9]   Expression cloning of the Golgi CMP-sialic acid transporter [J].
Eckhardt, M ;
Muhlenhoff, V ;
Bethe, A ;
GerardySchahn, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7572-7576
[10]   MOLECULAR-CLONING OF EUKARYOTIC GLYCOPROTEIN AND GLYCOLIPID GLYCOSYLTRANSFERASES - A SURVEY [J].
FIELD, MC ;
WAINWRIGHT, LJ .
GLYCOBIOLOGY, 1995, 5 (05) :463-472