Threshold diffusion in a tilted washboard potential

被引:181
作者
Costantini, G [1 ]
Marchesoni, F [1 ]
机构
[1] Univ Camerino, Ist Nazl Fis Mat, I-62032 Camerino, Italy
来源
EUROPHYSICS LETTERS | 1999年 / 48卷 / 05期
关键词
D O I
10.1209/epl/i1999-00510-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterize the locked-to-running transition of a Brownian particle in a tilted washboard potential by looking at its transport properties in the vicinity of the transition threshold. At low temperatures the (normal) spatial diffusion of the particle is enhanced as a consequence of the unlocking mechanism; in the overdamped regime an analytic expression is obtained that relates the particle diffusion constant to its mobility; in the underdamped regime an unusually large diffusion constant is revealed through numerical simulation. The latter regime is analyzed in terms of multiple jump statistics.
引用
收藏
页码:491 / 497
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 1982, PHYSICS APPL JOSEPHS
[2]   ACTIVATED RATE-PROCESSES - THE REACTIVE FLUX METHOD FOR ONE-DIMENSIONAL SURFACE-DIFFUSION [J].
BADER, JS ;
BERNE, BJ ;
POLLAK, E .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (10) :4037-4055
[3]   Critical hysteresis in a tilted washboard potential [J].
Borromeo, M ;
Costantini, G ;
Marchesoni, F .
PHYSICAL REVIEW LETTERS, 1999, 82 (14) :2820-2823
[4]  
BORROMEO M, IN PRESS
[5]   Hysteresis in the underdamed driven Frenkel-Kontorova model [J].
Braun, OM ;
Bishop, AR ;
Roder, J .
PHYSICAL REVIEW LETTERS, 1997, 79 (19) :3692-3695
[6]   RETRAPPING AND VELOCITY INVERSION IN JUMP DIFFUSION [J].
FERRANDO, R ;
SPADACINI, R ;
TOMMEI, GE .
PHYSICAL REVIEW E, 1995, 51 (01) :126-130
[7]   KRAMERS PROBLEM IN PERIODIC POTENTIALS - JUMP RATE AND JUMP LENGTHS [J].
FERRANDO, R ;
SPADACINI, R ;
TOMMEI, GE .
PHYSICAL REVIEW E, 1993, 48 (04) :2437-2451
[8]   OBSERVATION OF SURFACE MELTING [J].
FRENKEN, JWM ;
VANDERVEEN, JF .
PHYSICAL REVIEW LETTERS, 1985, 54 (02) :134-137
[9]   PROBLEM OF BROWNIAN-MOTION IN A PERIODIC POTENTIAL [J].
FULDE, P ;
PIETRONERO, L ;
SCHNEIDER, WR ;
STRASSLER, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (26) :1776-1779
[10]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287