A bivariate rational interpolation and the properties

被引:28
作者
Duan, Qi [1 ]
Zhang, Yunfeng
Twizell, E. H.
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
[2] Brunel Univ, Sch Informat Syst Comp & Math, Uxbridge UB8 3PH, Middx, England
基金
高等学校博士学科点专项科研基金;
关键词
bivariate interpolation; rational spline; computer-aided geometric design; CUBIC SPLINE; SURFACES; NURBS;
D O I
10.1016/j.amc.2005.11.094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a bivariate rational interpolation is constructed using both function values and partial derivatives of the function being interpolated as the interpolation data. The interpolation function has a simple and explicit rational mathematical representation with parameters, and it can be expressed by the symmetric bases. It is proved that the interpolation is stable. The concept of integral weights coefficients of the interpolation is given, which describes the "weight" of the interpolation points and the quantity as the interpolation data in the local interpolating region. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:190 / 199
页数:10
相关论文
共 20 条
[1]  
Bezier P., 1986, The Mathematical Basis of the UNISURF CAD System
[2]  
Chui C. K., 1988, MULTIVARIATE SPLINE
[3]   An interpolating piecewise bicubic surface with shape parameters [J].
Comninos, P .
COMPUTERS & GRAPHICS-UK, 2001, 25 (03) :463-481
[4]  
Dierckx P., 1989, Computer-Aided Geometric Design, V6, P279, DOI 10.1016/0167-8396(89)90029-0
[5]   Weighted rational cubic spline interpolation and its application [J].
Duan, Q ;
Djidjeli, K ;
Price, WG ;
Twizell, EH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (02) :121-135
[6]   A rational cubic spline based on function values [J].
Duan, Q ;
Djidjeli, K ;
Price, WG ;
Twizell, EH .
COMPUTERS & GRAPHICS, 1998, 22 (04) :479-486
[7]  
Duan Q, 2001, J COMPUT MATH, V19, P143
[8]   A new bivariate rational interpolation based on function value [J].
Duan, Q ;
Wang, L ;
Twizell, EH .
INFORMATION SCIENCES, 2004, 166 (1-4) :181-191
[9]   A novel approach to the convexity control of interpolant curves [J].
Duan, Q ;
Wang, LQ ;
Twizell, EH .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2003, 19 (10) :833-845
[10]  
Farin G., 1988, Curves and surfaces for computer-aided geometric design: a practical guide