Energy metabolism of trypanosomatids:: Adaptation to available carbon sources

被引:324
作者
Bringaud, Frederic [1 ]
Riviere, Loic [1 ]
Coustou, Virginie [1 ]
机构
[1] Univ Bordeaux 2, CNRS, Lab Genom Fonct Trypanosomatides, UMR 5162, F-33076 Bordeaux, France
关键词
Trypanosoma; Leishmania; energy metabolism; ATP production; glucose; L-proline; aerobic fermentation; glucose-repression effect;
D O I
10.1016/j.molbiopara.2006.03.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Some development stages of the trypanosomatid protozoan parasites are well adapted to in vitro culture. They can be maintained in rich medium containing large excess of glucose and amino acids, which they use as carbon sources for ATP production. Under these growth conditions, carbon sources are converted into partially oxidized end products by so-called aerobic fermentation. Surprisingly, some species, such as the Trypanosoma brucei, Trypanosoma cruzi and Crithidia insect stages, prefer consuming glucose to amino acids, although their natural habitat is L-proline-rich. This review focuses on recent progress in understanding glucose and L-proline metabolism of insect stages, how these metabolic processes are regulated, and the rationale of the aerobic fermentation strategies developed by these parasites. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 56 条
[1]   The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions [J].
Annoura, T ;
Nara, T ;
Makiuchi, T ;
Hashimoto, T ;
Aoki, T .
JOURNAL OF MOLECULAR EVOLUTION, 2005, 60 (01) :113-127
[2]   The Trypanosoma cruzi proteome [J].
Atwood, JA ;
Weatherly, DB ;
Minning, TA ;
Bundy, B ;
Cavola, C ;
Opperdoes, FR ;
Orlando, R ;
Tarleton, RL .
SCIENCE, 2005, 309 (5733) :473-476
[3]   UPTAKE, DISTRIBUTION, AND OXIDATION OF FATTY-ACIDS BY LEISHMANIA-MEXICANA-AMASTIGOTES [J].
BERMAN, JD ;
GALLALEE, JV ;
BEST, JM ;
HILL, T .
JOURNAL OF PARASITOLOGY, 1987, 73 (03) :555-560
[4]   The genome of the African trypanosome Trypanosoma brucei [J].
Berriman, M ;
Ghedin, E ;
Hertz-Fowler, C ;
Blandin, G ;
Renauld, H ;
Bartholomeu, DC ;
Lennard, NJ ;
Caler, E ;
Hamlin, NE ;
Haas, B ;
Böhme, W ;
Hannick, L ;
Aslett, MA ;
Shallom, J ;
Marcello, L ;
Hou, LH ;
Wickstead, B ;
Alsmark, UCM ;
Arrowsmith, C ;
Atkin, RJ ;
Barron, AJ ;
Bringaud, F ;
Brooks, K ;
Carrington, M ;
Cherevach, I ;
Chillingworth, TJ ;
Churcher, C ;
Clark, LN ;
Corton, CH ;
Cronin, A ;
Davies, RM ;
Doggett, J ;
Djikeng, A ;
Feldblyum, T ;
Field, MC ;
Fraser, A ;
Goodhead, I ;
Hance, Z ;
Harper, D ;
Harris, BR ;
Hauser, H ;
Hostetter, J ;
Ivens, A ;
Jagels, K ;
Johnson, D ;
Johnson, J ;
Jones, K ;
Kerhornou, AX ;
Koo, H ;
Larke, N .
SCIENCE, 2005, 309 (5733) :416-422
[5]   Energy generation in insect stages of Trypanosoma brucei:: metabolism in flux [J].
Besteiro, S ;
Barrett, MP ;
Rivière, L ;
Bringaud, F .
TRENDS IN PARASITOLOGY, 2005, 21 (04) :185-191
[6]   Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase [J].
Besteiro, S ;
Biran, M ;
Biteau, N ;
Coustou, V ;
Baltz, T ;
Canioni, P ;
Bringaud, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (41) :38001-38012
[7]   Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei [J].
Bochud-Allemann, N ;
Schneider, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :32849-32854
[8]  
BROWN GC, 1992, BIOCHEM J, V284, P1
[9]  
Bursell E., 1981, P135
[10]   THE AEROBIC FERMENTATION OF GLUCOSE BY TRYPANOSOMA-CRUZI [J].
CANNATA, JJB ;
CAZZULO, JJ .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1984, 79 (03) :297-308