Recurrence time statistics in chaotic dynamics .1. Discrete time maps

被引:23
作者
Balakrishnan, V
Nicolis, G
Nicolis, C
机构
[1] FREE UNIV BRUSSELS,CTR NONLINEAR PHENOMENA & COMPLEX SYST,B-1050 BRUSSELS,BELGIUM
[2] INT ROYAL METEOROL BELGIQUE,B-1180 BRUSSELS,BELGIUM
关键词
recurrence time; escape time; Markov partition; fully developed chaos; intermittent chaos;
D O I
10.1007/BF02180204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of transitions between the cells of a finite-phase-space partition in a variety of systems giving rise to chaotic behavior is analyzed, with special emphasis on the statistics of recurrence times. In the case of one-dimensional piecewise Markov maps the recurrence problem is cast into a renewal process. In the presence of intermittency, transitions between cells define a non-Markovian, non-renewal process reflected in the presence of power-law probability distributions and of divergent variances and mean values.
引用
收藏
页码:191 / 212
页数:22
相关论文
共 11 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]  
COX DR, 1994, THEORY STOCHASTIC PR
[3]  
DEBRUIJN NG, 1981, ASYMPTOTIC METHODS A
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[6]  
Lasota A., 1985, PROBABILISTIC PROPER
[7]   GENERALIZED MARKOV COARSE GRAINING AND SPECTRAL DECOMPOSITIONS OF CHAOTIC PIECEWISE-LINEAR MAPS [J].
MACKERNAN, D ;
NICOLIS, G .
PHYSICAL REVIEW E, 1994, 50 (02) :988-999
[8]  
Manneville P., 1980, Physica D, V10, P219, DOI 10.1016/0167-2789(80)90013-5
[9]  
Nicolis G., 1991, Chaos, Solitons and Fractals, V1, P25, DOI 10.1016/0960-0779(91)90053-C
[10]   MASTER-EQUATION APPROACH TO DETERMINISTIC CHAOS [J].
NICOLIS, G ;
NICOLIS, C .
PHYSICAL REVIEW A, 1988, 38 (01) :427-433